|   | 
Details
   web
Records
Author Khosropanah, P.; Merkel, H.; Yngvesson, S.; Adam, A.; Cherednichenko, S.; Kollberg, E.
Title A distributed device model for phonon-cooled HEB mixers predicting IV characteristics, gain, noise and IF bandwidth Type Conference Article
Year 2000 Publication Proc. 11th Int. Symp. Space Terahertz Technol. Abbreviated Journal
Volume Issue Pages 474-488
Keywords HEB mixer numerical model, diffusion cooling channel, diffusion channel, distributed HEB model, distributed model
Abstract A distributed model for phonon-cooled superconductor hot electron bolometer (HEB) mixers is given, which is based on solving the one-dimensional heat balance equation for the electron temperature profile along the superconductor strip. In this model it is assumed that the LO power is absorbed uniformly along the bridge but the DC power absorption depends on the local resistivity and is thus not uniform. The electron temperature dependence of the resistivity is assumed to be continuous and has a Fermi form. These assumptions are used in setting up the non-linear heat balance equation, which is solved numerically for the electron temperature profile along the bolometer strip. Based on this profile the resistance of the device and the IV curves are calculated. The IV curves are in excellent agreement with measurement results. Using a small signal model the conversion gain of the mixer is obtained. The expressions for Johnson noise and thermal fluctuation noise are derived. The calculated results are in close agreement with measurements, provided that one of the parameters used is adjusted.
Address
Corporate Author Thesis
Publisher Place of Publication (down) University of Michigan, Ann Arbor, MI USA Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 893
Permanent link to this record
 

 
Author Kawamura, Jonathan; Blundell, Raymond; Tong, C.-Y. Edward; Papa, D. Cosmo; Hunter, Todd R.; Paine, Scot.t. N.; Patt, Ferdinand; Gol'tsman, Gregory; Cherednichenko, Sergei; Voronov, Boris; Gershenzon, Eugene
Title Superconductive hot-electron bolometer mixer receiver for 800 GHz operation Type Miscellaneous
Year 2000 Publication IEEE Trans. Microwave Theory and Techniques Abbreviated Journal IEEE Trans. Microwave Theory and Techniques
Volume 48 Issue 4 Pages 683-689
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication (down) Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ s @ Kawamura_superconductivehot-electron Serial 424
Permanent link to this record
 

 
Author Gundlach, K. H.; Schicke, M.
Title SIS and bolometer mixers for terahertz frequencies Type Journal Article
Year 2000 Publication Supercond. Sci. Technol Abbreviated Journal
Volume 13 Issue Pages 181-187
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication (down) Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ s @ sis_Gundlach_2000 Serial 302
Permanent link to this record
 

 
Author Tong, C.-Y. Edward; Kawamura, Jonathan; Todd, R. Hunter; Papa, D. Cosmo; Blundell, Raymond.; Smith, Michael; Patt, Ferdinand; Gol'tsman, Gregory; Gershenzon, Eugene
Title Successful operation of a 1 THz NbN hot-electron bolometer receiver Type Conference Article
Year 2000 Publication Proc. 11th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 11th Int. Symp. Space Terahertz Technol.
Volume Issue Pages 49-59
Keywords NbN HEB mixers, applications
Abstract A phonon-cooled NbN superconductive hot-electron bolometer receiver covering the frequency range 0.8-1.04 THz has successfully been used for astronomical observation at the Sub-Millimeter Telescope Observatory on Mount Graham, Arizona. This waveguide heterodyne receiver is a modified version of our fixed-tuned 800 GHz HEB receiver to allow for operation beyond 1 THz. The measured noise temperature of this receiver is about 1250 K at 0.81 THz, 560 K at 0.84 THz, and 1600 K at 1.035 THz. It has a 1 GHz wide IF bandwidth, centered at 1.8 GHz. This receiver has recently been used to detect the CO (9-8) molecular line emission at 1.037 THz in the Orion nebula. This is the first time a ground-based heterodyne receiver has been used to detect a celestial source above 1 THz.
Address
Corporate Author Thesis
Publisher Place of Publication (down) Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 303
Permanent link to this record
 

 
Author Semenov, A. D.; Hübers, H.–W.; Schubert, J.; Gol'tsman, G. N.; Elantiev, A. I.; Voronov, B. M.; Gershenzon, E. M.
Title Frequency dependent noise temperature of the lattice cooled hot-electron terahertz mixer Type Conference Article
Year 2000 Publication Proc. 11th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 11th Int. Symp. Space Terahertz Technol.
Volume Issue Pages 39-48
Keywords NbN HEB mixers
Abstract We present the measurements and the theoretical model on the frequency dependent noise temperature of a lattice cooled hot electron bolometer (HEB) mixer in the terahertz frequency range. The experimentally observed increase of the noise temperature with frequency is a cumulative effect of the non-uniform distribution of the high frequency current in the bolometer and the charge imbalance, which occurs near the edges of the normal domain and contacts with normal metal. In addition, we present experimental results which show that the noise temperature of a HEB mixer can be reduced by about 30% due to a Parylene antireflection coating on the Silicon hyperhemispheric lens.
Address
Corporate Author Thesis
Publisher Place of Publication (down) Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 305
Permanent link to this record