|   | 
Details
   web
Records
Author Antipov, S. V.; Svechnikov, S. I.; Smirnov, K. V.; Vakhtomin, Y. B.; Finkel, M. I.; Goltsman, G. N.; Gershenzon, E. M.
Title Noise temperature of quasioptical NbN hot electron bolometer mixers at 900 GHz Type Journal Article
Year 2001 Publication Physics of Vibrations Abbreviated Journal Physics of Vibrations
Volume 9 Issue 4 Pages 242-245
Keywords NbN HEB mixers
Abstract (up)
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1069-1227 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1550
Permanent link to this record
 

 
Author Svechnikov, S. I.; Antipov, S. V.; Vakhtomin, Y. B.; Goltsman, G. N.; Gershenzon, E. M.; Cherednichenko, S. I.; Kroug, M.; Kollberg, E.
Title Conversion and noise bandwidths of terahertz NbN hot-electron bolometer mixers Type Journal Article
Year 2001 Publication Physics of Vibrations Abbreviated Journal Physics of Vibrations
Volume 9 Issue 3 Pages 205-210
Keywords NbN HEB mixers
Abstract (up)
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1069-1227 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1551
Permanent link to this record
 

 
Author Hsiao, F.Z.; Lin, M.C.; Wang, C.; Lee, D.S.; Chen, J.R.; Hilbert, B.; Praud, A.
Title The liquid helium cryogenic system for the superconducting cavity in SRRC Type Conference Article
Year 2001 Publication Proc. Particle Accelerator Conference Abbreviated Journal
Volume 2 Issue Pages 1604-1606
Keywords
Abstract (up) A 500 MHz superconducting cavity will replace the current copper cavity and begin to operate in the beginning of the year 2003. A liquid helium cryogenic system provides the cavity at 4.5 K a cooling capacity of 255 W without LN2 pre-cooling and a liquefaction rate of 110 liter/hour with LN2 pre-cooling. A safety factor of 1.5 is used to estimate the heat load from the superconducting cavity and the heat loss from the transfer lines. With the LN2 pre-cooling, this cooling system provides a cooling capacity of up to 450 W to cool down the additional superconducting Landau cavity. The capacity of the system can be tuned using a frequency driver installed at the compressor station. The pressure fluctuations of the dewar and of the suction line are kept to the same stability requirement that of the cavity cryostat to minimize the influence in cavity operation. A shutdown period for maintenance of more than 8000 hours for the cryogenic system is expected without interfering with the continuous operation of the superconducting cavity.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ s @ Serial 426
Permanent link to this record
 

 
Author Puscasu, Irina; Boreman, Glenn D.
Title Theoretical and experimental analysis of transmission and enchanced absorption of frequency selective surfaces in the infrared Type Conference Article
Year 2001 Publication Proc. SPIE Abbreviated Journal Proc. SPIE
Volume 4293 Issue Pages 185-190
Keywords optical antennas
Abstract (up) A comparative study between theory and experiment is presented for transmission through lossy frequency selective surfaces (FSSs) on silicon in the 2 – 15 micrometer range. Important parameters controlling the resonance shape and location are identified: dipole length, spacing, impedance, and dielectric surroundings. Their separate influence is exhibited. The primary resonance mechanism of FSSs is the resonance of the individual metallic patches. There is no discernable resonance arising from a feed-coupled configuration. The real part of the element's impedance controls the minimum value of transmission, while scarcely affecting its location. Varying the imaginary part shifts the location of resonance, while only slightly changing the minimum value of transmission. With such fine-tuning, it is possible to make a good fit between theory and experiment near the dipole resonance on any sample. A fixed choice of impedance can provide a reasonable fit to all samples fabricated under the same conditions. The dielectric surroundings change the resonance wavelength of the FSS compared to its value in air. The presence of FSS on the substrate increases the absorptivity/emissivity of the surface in a resonant way. Such enhancement is shown for dipole and cross arrays at several wavelengths.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ gujma @ Serial 753
Permanent link to this record
 

 
Author Gol’tsman, G.; Okunev, O.; Chulkova, G.; Lipatov, A.; Dzardanov, A.; Smirnov, K.; Semenov, A.; Voronov, B.; Williams, C.; Sobolewski, R.
Title Fabrication and properties of an ultrafast NbN hot-electron single-photon detector Type Journal Article
Year 2001 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.
Volume 11 Issue 1 Pages 574-577
Keywords NbN SSPD, SNSPD
Abstract (up) A new type of ultra-high-speed single-photon counter for visible and near-infrared wavebands based on an ultrathin NbN hot-electron photodetector (HEP) has been developed. The detector consists of a very narrow superconducting stripe, biased close to its critical current. An incoming photon absorbed by the stripe produces a resistive hotspot and causes an increase in the film’s supercurrent density above the critical value, leading to temporary formation of a resistive barrier across the device and an easily measurable voltage pulse. Our NbN HEP is an ultrafast (estimated response time is 30 ps; registered time, due to apparatus limitations, is 150 ps), frequency unselective device with very large intrinsic gain and negligible dark counts. We have observed sequences of output pulses, interpreted as single-photon events for very weak laser beams with wavelengths ranging from 0.5 /spl mu/m to 2.1 /spl mu/m and the signal-to-noise ratio of about 30 dB.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1558-2515 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1547
Permanent link to this record