toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Kawamura, J.; Tong, C.-Y. E.; Blundell, R.; Papa, D. C.; Hunter, T. R.; Patt, F.; Gol’tsman, G.; Gershenzon, E. url  doi
openurl 
  Title Terahertz-frequency waveguide NbN hot-electron bolometer mixer Type Journal Article
  Year 2001 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.  
  Volume 11 Issue (up) 1 Pages 952-954  
  Keywords NbN HEB mixers  
  Abstract We have developed a low-noise waveguide heterodyne receiver for operation near 1 THz using phonon-cooled NbN hot-electron bolometers. The mixer elements are submicron-sized microbridges of 4 nm-thick NbN film fabricated on a quartz substrate. Operating at a bath temperature of 4.2 K, the double-sideband receiver noise temperature is 760 K at 1.02 THz and 1100 K at 1.26 THz. The local oscillator is provided by solid-state sources, and power measured at the source is less than 1 /spl mu/W. The intermediate frequency bandwidth exceeds 2 GHz. The receiver was used to make the first ground-based heterodyne detection of a celestial spectroscopic line above 1 THz.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1558-2515 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1546  
Permanent link to this record
 

 
Author Hübers, H.-W.; Schubert, J.; Krabbe, A.; Birk, M.; Wagner, G.; Semenov, A.; Gol’tsman, G.; Voronov, B.; Gershenzon, E. url  doi
openurl 
  Title Parylene anti-reflection coating of a quasi-optical hot-electron-bolometric mixer at terahertz frequencies Type Journal Article
  Year 2001 Publication Infrared Physics & Technology Abbreviated Journal Infrared Physics & Technology  
  Volume 42 Issue (up) 1 Pages 41-47  
  Keywords NbN HEB mixers, anti-reflection coating  
  Abstract Parylene C was investigated as anti-reflection coating for silicon at terahertz frequencies. Measurements with a Fourier-transform spectrometer show that the transmittance of pure silicon can be improved by about 30% when applying a layer of Parylene C with a quarter wavelength optical thickness. The 10% bandwidth of this coating extends from 1.5 to 3 THz for a center frequency of 2.3–2.5 THz, where the transmittance is constant. Heterodyne measurements demonstrate that the noise temperature of a hot-electron-bolometric mixer can be reduced significantly by coating the silicon lens of the hybrid antenna with a quarter wavelength Parylene C layer. Compared to the same mixer with an uncoated lens the improvement is about 30% at a frequency of 2.5 THz.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1350-4495 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1548  
Permanent link to this record
 

 
Author Mel’nikov, A. P.; Gurvich, Y. A.; Shestakov, L. N.; Gershenzon, E. M. url  doi
openurl 
  Title Magnetic field effects on the nonohmic impurity conduction of uncompensated crystalline silicon Type Journal Article
  Year 2001 Publication Jetp Lett. Abbreviated Journal Jetp Lett.  
  Volume 73 Issue (up) 1 Pages 44-47  
  Keywords uncompensated crystalline silicon, nonohmic impurity conduction, magnetic field  
  Abstract The impurity conduction of a series of crystalline silicon samples with the concentration of major impurity N ≈ 3 × 1016 cm−3 and with a varied, but very small, compensation K was measured as a function of the electric field E in various magnetic fields H-σ(H, E). It was found that, at K < 10−3 and in moderate E, where these samples are characterized by a negative nonohmicity (dσ(0, E)/dE < 0), the ratio σ(H, E)/σ(0, E) > 1 (negative magnetoresistance). With increasing E, these inequalities are simultaneously reversed (positive nonohmicity and positive magnetoresistance). It is suggested that both negative and positive nonohmicities are due to electron transitions in electric fields from impurity ground states to states in the Mott-Hubbard gap.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-3640 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1752  
Permanent link to this record
 

 
Author Van Rudd, J.; Johnson, Jon L.; Mittleman, Daniel M. url  doi
openurl 
  Title Cross-polarized angular emission patterns from lens-coupled terahertz antennas Type Journal Article
  Year 2001 Publication J. Opt. Soc. Am. B Abbreviated Journal  
  Volume 18 Issue (up) 10 Pages 1524  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0740-3224 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 475  
Permanent link to this record
 

 
Author Kasparek, W; Fernandez, A.; Hollmann, F; Wacker, R. openurl 
  Title Measurements of ohmic losses of metallic reflectors at 140 GHz using a 3-mirror resonator technique Type Journal Article
  Year 2001 Publication Int. J. Infrared and Millimeter Waves Abbreviated Journal  
  Volume 22 Issue (up) 11 Pages 1695-1707  
  Keywords mirror, reflection index, emissivity, Fabry-Perot interferometer, subterahertz, subTHz  
  Abstract The reflectivity of metallic mirrors in the millimeter wave region does not only depend on the material, but also on the structure and roughness of the surface. We have performed measurements of the reflectivity of various plane and grooved metallic and graphite samples at 140 GHz. The technique is based on the comparison of the quality factor of a 2-mirror reference resonator with the quality factor of a 3-mirror resonator which has identical dimensions and includes the mirror to be tested. After a brief presentation of the theory, the set-up is described and the reflection loss for various aluminium and copper mirrors as well as vacuum compatible materials for applications in thermonuclear fusion experiments are presented and discussed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 581  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: