|   | 
Details
   web
Records
Author (up) Tong, C.-Y. Edward; Meledin, Denis; Blundell, Raymond; Erickson, Neal; Kawamura, Jonathan; Mehdi, Imran; Gol'tsman, Gregory
Title A 1.5 THz hot-electron bolometer mixer operated by a planar diode-based local oscillator Type Abstract
Year 2003 Publication Proc. 14th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 14th Int. Symp. Space Terahertz Technol.
Volume Issue Pages 286
Keywords waveguide NbN HEB mixers
Abstract We describe a 1.5 THz heterodyne receiver based on a superconductin g hot-electron bolometer mixer, which is pumped by an all-solid-state local oscillator chain. The bolometer is fabricated from a 3.5 nm-thick niobium nitride film deposited on a quartz substrate with a 200 nm-thick magnesium oxide buffer layer. The bolometer measures 0.15 fun in width and 1.5 1..tm in length. The chip consisting of the bolometer and mixer circuitry is incorporated in a fixed-tuned waveguide mixer block with a corru g ated feed horn. The local oscillator unit comprises of a cascade of four planar doublers followin g a MMIC-based W-band power amplifier. The local oscillator is coupled to the mixer using a Martin-Puplett interferometer. The local oscillator output power needed for optimal receiver performance is approximately 1 to 2 11W, and the chain is able to provide this power at a number of frequency points between 1.45 and 1.56 THz. By terminating the rf input with room temperature and 77 K loads, a Y-factor of 1.11 (DSB) has been measured at a local oscillator frequency of 1.476 THz at 3 GHz intermediate frequency.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1501
Permanent link to this record
 

 
Author (up) Tong, C.-Y.E.; Meledin, D.V.; Marrone, D.P.; Paine, S.N.; Gibson, H.; Blundell, R.
Title Near field vector beam measurements at 1 THz Type Journal Article
Year 2003 Publication IEEE Microw. Compon. Lett. Abbreviated Journal
Volume 13 Issue 6 Pages 235-237
Keywords HEB, mixer, waveguide, LO power, local oscillator power, saturation effect, dynamic range
Abstract We have performed near-field vector beam measurements at 1.03 THz to characterize and align the receiver optics of a superconducting receiver. The signal source is a harmonic generator mounted on an X-Y translation stage. We model the measured two-dimensional complex beam pattern by a fundamental Gaussian mode, from which we derive the position of the beam center, the beam radius and the direction of propagation. By performing scans in the planes separated by 400 mm, we have confirmed that our beam pattern measurements are highly reliable.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1531-1309 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ lobanovyury @ Serial 574
Permanent link to this record
 

 
Author (up) Vakhtomin, Y. B.; Finkel, M. I.; Antipov, S. V.; Smirnov, K. V.; Kaurova, N. S.; Drakinskii, V. N.; Voronov, B. M.; Gol’tsman, G. N.
Title The gain bandwidth of mixers based on the electron heating effect in an ultrathin NbN film on a Si substrate with a buffer MgO layer Type Journal Article
Year 2003 Publication J. of communications technol. & electronics Abbreviated Journal J. of communications technol. & electronics
Volume 48 Issue 6 Pages 671-675
Keywords NbN HEB mixers
Abstract Measurements of the intermediate frequency band 900 GHz of mixers based on the electron heating effect (EHE) in 2-nm- and 3.5-nm-thick superconducting NbN films sputtered on MgO and Si substrates with buffer MgO layers are presented. A 2-nm-thick superconducting NbN film with a critical temperature of 9.2 K has been obtained for the first time using a buffer MgO layer.
Address
Corporate Author Thesis
Publisher MAIK Nauka/Interperiodica, Birmingham, AL Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1064-2269 ISBN Medium
Area Expedition Conference
Notes https://elibrary.ru/item.asp?id=17302119 (Полоса преобразования смесителей на эффекте разогрева электронов в ультратонких пленках NbN на подложках из Si с подслоем MgO) Approved no
Call Number Vakhtomin2003 Serial 1522
Permanent link to this record
 

 
Author (up) van't Klooster, C. G. M.; Parshin, V. V.; Myasnikova, S. E.
Title Reflectivity of antenna reflectors: measurements at frequencies between 110 and 200 GHz Type Conference Article
Year 2003 Publication Proc. Antennas and propagation society international symposium Abbreviated Journal
Volume 3 Issue Pages 528-531
Keywords mirror, reflection index, emissivity, reflectivity, mirror, Fabry-Perot interferometer, subterahertz, subTHz
Abstract It is imperative to test the mechanical, electrical and thermal-optical properties of MM and sub-MM reflector antennas. Electrical, thermal and optical properties are very important and high-accurate measurements lead, obviously, to more accurate results in applications. This paper deals with measurement of electrical reflectivity in the range 110-200 GHz. Reflectivity has been measured for a number of samples, which represent materials used in reflector antennas. Both metal samples and carbon-fibre samples were tested in a dedicated facility available for this purpose at the Applied Physics Institute in Nizhny Novgorod (IAP). The test facility is shortly discussed, with techniques for data extraction. Calibration is done with high quality silver coated mirrors and aluminium control samples. Accurate results have been derived with indicative interesting results.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 583
Permanent link to this record
 

 
Author (up) Verevkin, A. A.; Pearlman, A.; Slysz, W.; Zhang, J.; Sobolewski, R.; Chulkova, G.; Okunev, O.; Kouminov, P.; Drakinskij, V.; Smirnov, K.; Kaurova, N.; Voronov, B.; Gol’tsman, G.; Currie, M.
Title Ultrafast superconducting single-photon detectors for infrared wavelength quantum communications Type Conference Article
Year 2003 Publication Proc. SPIE Abbreviated Journal Proc. SPIE
Volume 5105 Issue Pages 160-170
Keywords NbN SSPD, SNSPD, applications, single-photon detector, quantum cryptography, quantum communications, superconducting devices
Abstract We have developed a new class of superconducting single-photon detectors (SSPDs) for ultrafast counting of infrared (IR) photons for secure quantum communications. The devices are operated on the quantum detection mechanism, based on the photon-induced hotspot formation and subsequent appearance of a transient resistive barrier across an ultrathin and submicron-wide superconducting stripe. The detectors are fabricated from 3.5-nm-thick NbN films and they operate at 4.2 K inside a closed-cycle refrigerator or liquid helium cryostat. Various continuous and pulsed laser sources have been used in our experiments, enabling us to determine the detector experimental quantum efficiency (QE) in the photon-counting mode, response time, time jitter, and dark counts. Our 3.5-nm-thick SSPDs reached QE above 15% for visible light photons and 5% at 1.3 – 1.5 μm infrared range. The measured real-time counting rate was above 2 GHz and was limited by the read-out electronics (intrinsic response time is <30 ps). The measured jitter was <18 ps, and the dark counting rate was <0.01 per second. The measured noise equivalent power (NEP) is 2 x 10-18 W/Hz1/2 at λ = 1.3 μm. In near-infrared range, in terms of the counting rate, jitter, dark counts, and overall sensitivity, the NbN SSPDs significantly outperform their semiconductor counterparts. An ultrafast quantum cryptography communication technology based on SSPDs is proposed and discussed.
Address
Corporate Author Thesis
Publisher SPIE Place of Publication Editor Donkor, E.; Pirich, A.R.; Brandt, H.E.
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference Quantum Information and Computation
Notes Approved no
Call Number Serial 1514
Permanent link to this record