toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (up) Sobolewski, R.; Zhang, J.; Slysz, W.; Pearlman, A.; Verevkin, A.; Lipatov, A.; Okunev, O.; Chulkova, G.; Korneev, A.; Smirnov, K.; Kouminov, P.; Voronov, B.; Kaurova, N.; Drakinsky, V.; Goltsman, G. N. url  doi
openurl 
  Title Ultrafast superconducting single-photon optical detectors Type Conference Article
  Year 2003 Publication Proc. SPIE Abbreviated Journal Proc. SPIE  
  Volume 5123 Issue Pages 1-11  
  Keywords NbN SSPD, SNSPD  
  Abstract We present a new class of single-photon devices for counting of both visible and infrared photons. Our superconducting single-photon detectors (SSPDs) are characterized by the intrinsic quantum efficiency (QE) reaching up to 100%, above 10 GHz counting rate, and negligible dark counts. The detection mechanism is based on the photon-induced hotspot formation and subsequent appearance of a transient resistive barrier across an ultrathin and submicron-wide superconducting stripe. The devices are fabricated from 3.5-nm-thick NbN films and operate at 4.2 K, well below the NbN superconducting transition temperature. Various continuous and pulsed laser sources in the wavelength range from 0.4 μm up to >3 μm were implemented in our experiments, enabling us to determine the detector QE in the photon-counting mode, response time, and jitter. For our best 3.5-nm-thick, 10×10 μm2-area devices, QE was found to reach almost 100% for any wavelength shorter than about 800 nm. For longer-wavelength (infrared) radiation, QE decreased exponentially with the photon wavelength increase. Time-resolved measurements of our SSPDs showed that the system-limited detector response pulse width was below 150 ps. The system jitter was measured to be 35 ps. In terms of the counting rate, jitter, and dark counts, the NbN SSPDs significantly outperform their semiconductor counterparts. Already identifeid and implemented applications of our devices range from noninvasive testing of semiconductor VLSI circuits to free-space quantum communications and quantum cryptography.  
  Address  
  Corporate Author Thesis  
  Publisher SPIE Place of Publication Editor Spigulis, J.; Teteris, J.; Ozolinsh, M.; Lusis, A.  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference Advanced Optical Devices, Technologies, and Medical Applications  
  Notes Approved no  
  Call Number Serial 1513  
Permanent link to this record
 

 
Author (up) Stéphane Claude openurl 
  Title Sideband-separating SIS mixer for ALMA band 7, 275–370 GHz Type Conference Article
  Year 2003 Publication Proc. 14th Int. Symp. Space Terahertz Technol. Abbreviated Journal  
  Volume Issue Pages 41  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Tucson, USA Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ s @ nt_SIS_60at0p34THz Serial 333  
Permanent link to this record
 

 
Author (up) Su, M. Y.; Carter, S. G.; Sherwin, M. S. url  doi
openurl 
  Title Strong-field terahertz optical mixing in excitons Type Journal Article
  Year 2003 Publication Phys. Rev. B Abbreviated Journal Phys. Rev. B  
  Volume 67 Issue 12 Pages  
  Keywords optical mixing  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 500  
Permanent link to this record
 

 
Author (up) Tinkham, M.; Free, J. U.; Lau, C. N.; Markovic, N. doi  openurl
  Title Hysteretic I–V curves of superconducting nanowires Type Journal Article
  Year 2003 Publication Phys. Rev. B Abbreviated Journal  
  Volume 68 Issue Pages 134515(1 to 7)  
  Keywords MoGe nanowires, self-heating effect  
  Abstract Experimental I–V curves of superconducting MoGe nanowires show hysteresis for the thicker wires and none for the thinner wires. A rather quantitative account of these data for representative wires is obtained by numerically solving the one-dimensional heat flow equation to find a self-consistent distribution of temperature and local resistivity along the wire, using the measured linear resistance R(T) as input. This suggests that the retrapping current in the hysteretic I–V curves is primarily determined by heating effects, and not by the dynamics of phase motion in a tilted washboard potential as often assumed. Heating effects and thermal fluctuations from the low-resistance state to a high-resistance, quasinormal regime appear to set independent upper bounds for the switching current.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 918  
Permanent link to this record
 

 
Author (up) Tong, C.-Y. E.; Meledin, D.; Loudkov, D.; Blundell, R.; Erickson, N.; Kawamura, J.; Mehdi, I.; Gol’tsman, G. url  doi
openurl 
  Title A 1.5 THz Hot-Electron Bolometer mixer operated by a planar diode based local oscillator Type Conference Article
  Year 2003 Publication IEEE MTT-S Int. Microwave Symp. Digest Abbreviated Journal IEEE MTT-S Int. Microwave Symp. Digest  
  Volume 2 Issue Pages 751-754  
  Keywords waveguide NbN HEB mixers  
  Abstract We have developed a 1.5 THz superconducting NbN Hot-Electron Bolometer mixer. It is operated by an all-solid-state Local Oscillator comprising of a cascade of 4 planar doublers following an MMIC based W-band power amplifier. The threshold available pump power is estimated to be 1 /spl mu/W.  
  Address Philadelphia, PA, USA  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1516  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: