toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Zhang, Jin; Slysz, W.; Verevkin, A.; Okunev, O.; Chulkova, G.; Korneev, A.; Lipatov, A.; Gol'tsman, G. N.; Sobolewski, R. doi  openurl
  Title Response time characterization of NbN superconducting single-photon detectors Type Journal Article
  Year 2003 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal  
  Volume (up) 13 Issue 2 Pages 180-183  
  Keywords SSPD jitter, SNSPD jitter  
  Abstract We report our time-resolved measurements of NbN-based superconducting single-photon detectors. The structures are meander-type, 10-nm thick, and 200-nm wide stripes and were operated at 4.2 K. We have shown that the NbN devices can count single-photon pulses with below 100-ps time resolution. The response signal pulse width was about 150 ps, and the system jitter was measured to be 35 ps.  
  Address  
  Corporate Author Thesis  
  Publisher IEEE Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1058  
Permanent link to this record
 

 
Author Meledin, D.; Tong, C.-Y. E.; Blundell, R.; Goltsman, G. url  doi
openurl 
  Title Measurement of intermediate frequency bandwidth of hot electron bolometer mixers at terahertz frequency range Type Journal Article
  Year 2003 Publication IEEE Microw. Wireless Compon. Lett. Abbreviated Journal IEEE Microw. Wireless Compon. Lett.  
  Volume (up) 13 Issue 11 Pages 493-495  
  Keywords waveguide NbN HEB mixers  
  Abstract We have developed a new experimental setup for measuring the IF bandwidth of superconducting hot electron bolometer mixers. In our measurement system we use a chopped hot filament as a broadband signal source, and can perform a high-speed IF scan with no loss of accuracy when compared to coherent methods. Using this technique we have measured the 3 dB IF bandwidth of hot electron bolometer mixers, designed for THz frequency operation, and made from 3-4 nm thick NbN film deposited on an MgO buffer layer over crystalline quartz.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1531-1309 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1509  
Permanent link to this record
 

 
Author Gol’tsman, G. N.; Smirnov, K.; Kouminov, P.; Voronov, B.; Kaurova, N.; Drakinsky, V.; Zhang, J.; Verevkin, A.; Sobolewski, R. url  doi
openurl 
  Title Fabrication of nanostructured superconducting single-photon detectors Type Journal Article
  Year 2003 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.  
  Volume (up) 13 Issue 2 Pages 192-195  
  Keywords NbN SSPD, SNSPD  
  Abstract Fabrication of NbN superconducting single-photon detectors, based on the hotspot effect is presented. The hotspot formation arises in an ultrathin and submicrometer-width superconductor stripe and, together with the supercurrent redistribution, leads to the resistive detector response upon absorption of a photon. The detector has a meander structure to maximally increase its active area and reach the highest detection efficiency. Main processing steps, leading to efficient devices, sensitive in 0.4-5 /spl mu/m wavelength range, are presented. The impact of various processing steps on the performance and operational parameters of our detectors is discussed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1558-2515 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1515  
Permanent link to this record
 

 
Author Semenov, A.; Engel, A.; Il'in, K.; Gol'tsman, G.; Siegel, M.; Hübers, H.-W. url  doi
openurl 
  Title Ultimate performance of a superconducting quantum detector Type Journal Article
  Year 2003 Publication Eur. Phys. J. Appl. Phys. Abbreviated Journal Eur. Phys. J. Appl. Phys.  
  Volume (up) 21 Issue 3 Pages 171-178  
  Keywords NbN SSPD, SNSPD  
  Abstract We analyze the ultimate performance of a superconducting quantum detector in order to meet requirements for applications in near-infrared astronomy and X-ray spectroscopy. The detector exploits a combined detection mechanism, in which avalanche quasiparticle multiplication and the supercurrent jointly produce a voltage response to a single absorbed photon via successive formation of a photon-induced and a current-induced normal hotspot in a narrow superconducting strip. The response time of the detector should increase with the photon energy providing energy resolution. Depending on the superconducting material and operation conditions, the cut-off wavelength for the single-photon detection regime varies from infrared waves to visible light. We simulated the performance of the background-limited infrared direct detector and X-ray photon counter utilizing the above mechanism. Low dark count rate and intrinsic low-frequency cut-off allow for realizing a background limited noise equivalent power of 10−20 W Hz−1/2 for a far-infrared direct detector exposed to 4-K background radiation. At low temperatures, the intrinsic response time of the counter is rather determined by diffusion of nonequilibrium electrons than by the rate of energy transfer to phonons. Therefore, thermal fluctuations do not hamper energy resolution of the X-ray photon counter that should be better than 10−3 for 6-keV photons. Comparison of new data obtained with a Nb based detector and previously reported results on NbN quantum detectors support our estimates of ultimate detector performance.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1286-0042 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 534  
Permanent link to this record
 

 
Author Hirata, A.; Harada, M.; Nagatsuma, T. openurl 
  Title 120-GHz wireless link using photonic techniques for generation, modulation, and emission of millimeter-wave signals Type Journal Article
  Year 2003 Publication J. of Lightwave Technology Abbreviated Journal  
  Volume (up) 21 Issue 10 Pages 2145-2153  
  Keywords subterahartz terahertz THz communications  
  Abstract We present a wireless link system that uses millimeter-wave (MMW) photonic techniques. The photonic transmitter in the wireless link consists of an optical 120-GHz MMW generator, an optical modulator, and a high-power photonic MMW emitter. A uni-traveling carrier photodiode (UTC-PD) was used as the photonic emitter in order to eliminate electronic MMW amplifiers. We evaluated the dependence of UTC-PD output power on its transit-time limited bandwidth and its CR-time constant limited bandwidth, and employed a UTC-PD with the highest output power for the photonic emitter. As for the MMW generation, we developed a 120-GHz optical MMW generator that generates a pulse train and one that generates a sinusoidal signal. The UTC-PD output power generated by a narrow pulse train was higher than that generated by sinusoidal signals under the same average optical power condition, which contributes to reducing the photocurrent of the photonic emitter. We have experimentally demonstrated that the photonic transmitter can transmit data at up to 3.0 Gb/s. The wireless link using the photonic transmitter can be applied to optical gigabit Ethernet signals.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 592  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: