|   | 
Details
   web
Records
Author Baselmans, J. J. A.; Hajenius, M.; Gao, J. R.; Klapwijk, T. M.; de Korte, P. A. J.; Voronov, B.; Gol'tsman, G.
Title Doubling of sensitivity and bandwidth in phonon cooled hot electron bolometer mixers Type Journal Article
Year 2004 Publication Appl. Phys. Lett. Abbreviated Journal Appl. Phys. Lett.
Volume 84 Issue 11 Pages 1958-1960
Keywords (up) NbN HEB mixers
Abstract We demonstrate that the performance of NbN lattice cooled hot electron bolometer mixers depends strongly on the interface quality between the bolometer and the contact structure. We show experimentally that both the receiver noise temperature and the gain bandwidth can be improved by more than a factor of 2 by cleaning the interface and adding an additional superconducting interlayer to the contact pad. Using this we obtain a double sideband receiver noise temperature TN,DSB=950 K

at 2.5 THz and 4.3 K, uncorrected for losses in the optics. At the same bias point, we obtain an IF gain bandwidth of 6 GHz.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 352
Permanent link to this record
 

 
Author Hubers, H.-W.; Semenov, A.; Richter, H.; Schwarz, M.; Gunther, B.; Smirnov, K.; Gol’tsman, G.; Voronov, B.
Title Heterodyne receiver for 3-5 THz with hot-electron bolometer mixer Type Conference Article
Year 2004 Publication Proc. SPIE Abbreviated Journal Proc. SPIE
Volume 5498 Issue Pages 579-586
Keywords (up) NbN HEB mixers
Abstract Heterodyne receivers for applications in astronomy and planetary research need quantum limited sensitivity. In instruments which are currently build for SOFIA and Herschel superconducting hot electron bolometers (HEB) will be used to achieve this goal at frequencies above 1.4 THz. The local oscillator and the mixer are the most critical components for a heterodyne receiver operating at 3-5 THz. The design and performance of an optically pumped THz gas laser optimized for this frequency band will be presented. In order to optimize the performance for this frequency hot electron bolometer mixers with different in-plane dimensions and logarithmic-spiral feed antennas have been investigated. Their noise temperatures and beam patterns were measured. Above 3 THz the best performance was achieved with a superconducting bridge of 2.0 x 0.2 μm2 incorporated in a logarithmic spiral antenna. The DSB noise temperatures were 2700 K, 4700 K and 6400 K at 3.1 THz, 4.3 THz and 5.2 THz, respectively. The results demonstrate that the NbN HEB is very well suited as a mixer for THz heterodyne receivers up to at least 5 THz.
Address
Corporate Author Thesis
Publisher SPIE Place of Publication Editor Zmuidzinas, J.; Holland, W.S.; Withington, S.
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference Millimeter and Submillimeter Detectors for Astronomy II
Notes Approved no
Call Number Serial 1483
Permanent link to this record
 

 
Author Baselmans, J. J. A.; Hajenius, M.; Gao, J. R.; Baryshev, A.; Kooi, J.; Klapwijk, T. M.; de Korte, P. A. J.; Voronov, B.; Gol’tsman, G.
Title Hot electron bolometer mixers with improved interfaces: sensitivity, LO power and stability Type Conference Article
Year 2004 Publication Proc. 15th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 15th Int. Symp. Space Terahertz Technol.
Volume Issue Pages 17-24
Keywords (up) NbN HEB mixers
Abstract We study twin slot antenna coupled NbN hot electron bolometer mixers with an improved contact structure and a small volume, ranging from 1 µm × 0.1 µm to 2 × 0.3 µm. We obtain a DSB receiver noise temperature of 900 K at 1.6 THz and 940 K at 1.9 THz. To explore the practical usability of such small HEB mixers we evaluate the LO power requirement, the sensitivity and the stability. We find that the LO power requirement of the smallest mixers is reduced to about 240 nW at the Si lens of the mixer. This value is larger than expected from the isothermal technique and the known losses in the lens by a factor of 3-3.5. The stability of these receivers is characterized using a measurement of the Allan Variance. We find an Allan time of 0.5 sec. in an 80 MHz bandwidth. A small increase in stability can be reached by using a higher bias at the expense of a significant amount of sensitivity. The stability is sufficient for spectroscopic applications in a 1 MHz bandwidth at a 1 Hz chopping frequency.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1491
Permanent link to this record
 

 
Author Semenov, Alexei D.; Hübers, Heinz-Wilhelm; Richter, Heiko; Smirnov, Konstantin; Gol'tsman, Gregory N.; Voronov, Boris M.
Title Superconducting hot-electron bolometer mixer for terahertz heterodyne receivers Type Abstract
Year 2004 Publication Proc. 15th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 15th Int. Symp. Space Terahertz Technol.
Volume Issue Pages 164
Keywords (up) NbN HEB mixers
Abstract A number of on-going astronomical and atmospheric research programs are aimed to the Terahertz (THz) spectral region. At frequencies above about 1.4 THz heterodyne receivers planned for these missions will use superconducting hot-electron bolometers as a mixers. We present current results on the development of superconducting NbN hot- electron bolometer mixer and quasioptical radiation coupling scheme for GREAT (German Receiver for Astronomy at Terahertz Frequencies, to be used aboard of SOFIA) and TELIS (Terahertz Limb Sounder). The mixer is incorporated into hybrid antenna consisting of a planar feed antenna, which has either logarithmic spiral or double-slot configuration, and hyperhemispherical silicon lens. For the log-spiral feed antenna, the double side-band receiver noise temperature of 5500 K was achieved at 4.3 THz. The noise temperature shows less than 3 dB increase in the intermediate frequency band from 4 GHz to 7 GHz. The hybrid antenna had almost frequency independent and symmetric radiation pattern with the beam-width slightly broader than expected for a diffraction limited pattern. Results of FTS measurements in the direct detection regime agreed with the spectral dependence of the noise temperature for spiral antennas with different spacing of inner terminals.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1492
Permanent link to this record
 

 
Author Richter, H.; Semenov, A.; Hubers, H.-W.; Smirnov, K.; Gol’tsman, G.; Voronov, B.
Title Phonon cooled hot-electron bolometric mixer for 1-5 THz Type Conference Article
Year 2004 Publication Proc. 29th IRMMW / 12th THz Abbreviated Journal Proc. 29th IRMMW / 12th THz
Volume Issue Pages 241-242
Keywords (up) NbN HEB mixers
Abstract Heterodyne receivers for applications in astronomy and planetary research need quantum limited sensitivity. In instruments which are currently built for SOFIA and Herschel, superconducting hot electron bolometers (HEB) are used to achieve this goal at frequencies above 1.4 THz. In order to optimize the performance for this frequency of hot electron bolometer mixers with different in-plane dimensions and logarithmic-spiral feed antennas have been investigated. Their noise temperatures and beam patterns were measured. Above 3 THz the best performance was achieved with a superconducting bridge of 2.0/spl times/0.2 /spl mu/m/sup 2/ incorporated in a logarithmic spiral antenna. The DSB noise temperatures were 2700 K, 4700 and 6400 K at 3.1 THz, 4.3 THz and 5.2 THz, respectively. The results demonstrate that the NbN HEB is very well suited as a mixer for THz heterodyne receivers up to at least 5 THz.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1506
Permanent link to this record