toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Meledin, D. V.; Marrone, D. P.; Tong, C.-Y. E.; Gibson, H.; Blundell, R.; Paine, S. N.; Papa, D.C.; Smith, M.; Hunter, T. R.; Battat, J.; Voronov, B.; Gol'tsman, G. url  doi
openurl 
  Title (up) A 1-THz superconducting hot-electron-bolometer receiver for astronomical observations Type Journal Article
  Year 2004 Publication IEEE Trans. Microwave Theory Techn. Abbreviated Journal IEEE Trans. Microwave Theory Techn.  
  Volume 52 Issue 10 Pages 2338-2343  
  Keywords NbN HEB mixer, applications  
  Abstract In this paper, we describe a superconducting hot-electron-bolometer mixer receiver developed to operate in atmospheric windows between 800-1300 GHz. The receiver uses a waveguide mixer element made of 3-4-nm-thick NbN film deposited over crystalline quartz. This mixer yields double-sideband receiver noise temperatures of 1000 K at around 1.0 THz, and 1600 K at 1.26 THz, at an IF of 3.0 GHz. The receiver was successfully tested in the laboratory using a gas cell as a spectral line test source. It is now in use on the Smithsonian Astrophysical Observatory terahertz test telescope in northern Chile.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0018-9480 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1484  
Permanent link to this record
 

 
Author Pan, S. K.; A. R. Kerr, M. W. Pospieszalski; Lauria, E. F.; Crady, W. K.; Horner, N.; Srikanth, Jr. S.; Bryerton, E.; Saini, K.; Claude, S. M. X.; Chin, C. C.; Dindo, P.; Rodrigues, G.; Derdall, D.; Zhang, J. Z.; Lichtenberger, A. W. openurl 
  Title (up) A fixed-tuned integrated SIS mixer with ultra-wideband IF and quantum-limited sensitivity for ALMA band 3 (84-116 GHz) receivers Type Conference Article
  Year 2004 Publication Proc. 15th Int. Symp. Space Terahertz Technol. Abbreviated Journal  
  Volume Issue Pages 55-61  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Northampton, MA Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ s @ SIS_bandw_8GHz Serial 358  
Permanent link to this record
 

 
Author Slysz, W.; Wegrzecki, M.; Papis, E.; Gol'tsman, G. N.; Verevkin, A.; Sobolewski, R. url  openurl
  Title (up) A method of optimization of the NbN superconducting single-photon detector Type Miscellaneous
  Year 2004 Publication INIS Abbreviated Journal INIS  
  Volume 36 Issue 27 Pages 1-2  
  Keywords NbN SSPD, SNSPD  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference 5-th International Symposium Ion Implantation and Other Applications of Ions and Electrons, ION  
  Notes Reference num. 36060124 Approved no  
  Call Number Serial 1485  
Permanent link to this record
 

 
Author Genack, Azriel Z.; Kopp, Victor I.; Churikov, Victor M.; Singer, Jonathan; Chao, Norman; Neugroschl, Daniel A. openurl 
  Title (up) Chiral fiber Bragg gratings Type Conference Article
  Year 2004 Publication Proceedings of the SPIE Abbreviated Journal Proc. SPIE  
  Volume 5508 Issue Pages 57-64  
  Keywords optical fiber gratings, chiral fiber gratings, chiral gratings, from chiralphotonics  
  Abstract We have produced chiral fiber Bragg gratings with double-helix symmetry and measured the polarization and wavelength selective transmission properties of these structures. These gratings interact only with circularly polarized light with the same handedness as the grating twist and freely transmit light of the orthogonal polarization. The optical characteristics of chiral fibers are compared to those of planar cholesteric structures. The resonant standing wave at the band edge or at a defect state within the band gap, as well as the evanescent wave within the band gap is comprised of two counterpropagating components of equal amplitude. The electric field vector of such a circularly polarized standing wave does not rotate in time; rather it is linearly polarized in any given plane. The standing wave may be described in terms of the sense of circular polarization of the two counterpropagating components. The wavelength dependence of the angle q between the linearly polarized electromagnetic field and the extraordinary axis, which is constant throughout a long structure, is obtained in a simple calculation. The results are in good agreement with scattering matrix calculations. Resonant chiral gratings are demonstrated for microwave radiation whereas chiral gratings with pitch exceeding the wavelength are demonstrated at optical wavelengths in single-mode glass fibers. The different functionalities of these fibers are discussed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 854  
Permanent link to this record
 

 
Author Meledin D.; Pantaleev M.; Pavolotsky A.; Risacher C.; Robles V.A.P.; Belitsky V.; Drakinskiy V.; Cherednichenko S. openurl 
  Title (up) Design of a balanced waveguide HEB mixer for APEX 1.32 THz receiver Type Conference Article
  Year 2004 Publication Proc. 15th Int. Symp. Space Terahertz Technol. Abbreviated Journal  
  Volume Issue Pages 211-217  
  Keywords  
  Abstract The prototype of a waveguide balanced Hot Electron Bolometer (HEB) Terahertz mixer is designed as a part of development for the APEX Project of Band T2 receiver for 1250-1390 GHz. The proposed mixer employs balanced scheme with two identical HEB devices. These individual mixers would be placed on two separate crystalline quartz substrates with dimensions of 1000μm x67μm x17 μm each with integrated RF choke filters, DC-bias and IF circuitry. A 3 dB quadrature waveguide directional coupler is needed to provide local oscillator (LO) injection and RF signal distribution between the two HEB mixers. We have designed the coupler to achieve the required frequency band, low insertion loss and symmetrical division of the RF and LO power within the band of interest. Initial design of HEB mixer layout is developed based on a previous development for a 345 GHz sideband separation mixer. We present also results of development of microfabrication technology of the waveguide hybrid employing micromachining approach combined with electroplating technique.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ atomics90 @ Serial 972  
Permanent link to this record
 

 
Author Krasnopolsky, Vladimir A.; Maillard, Jean Pierre; C. Owen, Tobias openurl 
  Title (up) Detection of methane in the martian atmosphere: evidence for life? Type Journal Article
  Year 2004 Publication Icarus Abbreviated Journal Icarus  
  Volume 172 Issue 2 Pages 537-547  
  Keywords FTS, Mars atmosphere, methane absorption lines, IR spectroscopy, infrared spectroscopy, landfill gas  
  Abstract Using the Fourier Transform Spectrometer at the Canada–France–Hawaii Telescope, we observed a spectrum of Mars at the P-branch of the strongest CH4 band at 3.3 μm with resolving power of 180,000 for the apodized spectrum. Summing up the spectral intervals at the expected positions of the 15 strongest Doppler-shifted martian lines, we detected the absorption by martian methane at a 3.7 sigma level which is exactly centered in the summed spectrum. The observed CH4 mixing ratio is 10±3 ppb. Total photochemical loss of CH4 in the martian atmosphere is equal to View the MathML source, the CH4 lifetime is 340 years and methane should be uniformly mixed in the atmosphere. Heterogeneous loss of atmospheric methane is probably negligible, while the sink of CH4 during its diffusion through the regolith may be significant. There are no processes of CH4 formation in the atmosphere, so the photochemical loss must therefore be balanced by abiogenic and biogenic sources. Outgassing from Mars is weak, the latest volcanism is at least 10 million years old, and thermal emission imaging from the Mars Odyssey orbiter does not reveal any hot spots on Mars. Hydrothermal systems can hardly be warmer than the room temperature at which production of methane is very low in terrestrial waters. Therefore a significant production of hydrothermal and magmatic methane is not very likely on Mars. The calculated average production of CH4 by cometary impacts is 2% of the methane loss. Production of methane by meteorites and interplanetary dust does not exceed 4% of the methane loss. Methane cannot originate from an extinct biosphere, as in the case of “natural gas” on Earth, given the exceedingly low limits on organic matter set by the Viking landers and the dry recent history which has been extremely hostile to the macroscopic life needed to generate the gas. Therefore, methanogenesis by living subterranean organisms is a plausible explanation for this discovery. Our estimates of the biomass and its production using the measured CH4 abundance show that the martian biota may be extremely scarce and Mars may be generally sterile except for some oases.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 879  
Permanent link to this record
 

 
Author Baselmans, J. J. A.; Hajenius, M.; Gao, J. R.; Klapwijk, T. M.; de Korte, P. A. J.; Voronov, B.; Gol'tsman, G. doi  openurl
  Title (up) Doubling of sensitivity and bandwidth in phonon cooled hot electron bolometer mixers Type Journal Article
  Year 2004 Publication Appl. Phys. Lett. Abbreviated Journal Appl. Phys. Lett.  
  Volume 84 Issue 11 Pages 1958-1960  
  Keywords NbN HEB mixers  
  Abstract We demonstrate that the performance of NbN lattice cooled hot electron bolometer mixers depends strongly on the interface quality between the bolometer and the contact structure. We show experimentally that both the receiver noise temperature and the gain bandwidth can be improved by more than a factor of 2 by cleaning the interface and adding an additional superconducting interlayer to the contact pad. Using this we obtain a double sideband receiver noise temperature TN,DSB=950 K

at 2.5 THz and 4.3 K, uncorrected for losses in the optics. At the same bias point, we obtain an IF gain bandwidth of 6 GHz.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 352  
Permanent link to this record
 

 
Author Baselmans, J. J. A.; Hajenius, M.; Gao, J.; de Korte, P.; Klapwijk, T. M.; Voronov, B.; Gol’tsman, G. url  doi
openurl 
  Title (up) Doubling of sensitivity and bandwidth in phonon-cooled hot-electron bolometer mixers Type Conference Article
  Year 2004 Publication Proc. SPIE Abbreviated Journal Proc. SPIE  
  Volume 5498 Issue Pages 168-176  
  Keywords Hot electron bolometers, bandwidth, noise temperature, experimental  
  Abstract NbN hot electron bolometer (HEB) mixers are at this moment the best heterodyne detectors for frequencies above 1 THz. However, the fabrication procedure of these devices is such that the quality of the interface between the NbN superconducting film and the contact structure is not under good control. This results in a contact resistance between the NbN bolometer and the contact pad. We compare identical bolometers, with different NbN – contact pad interfaces, coupled with a spiral antenna. We find that cleaning the NbN interface and adding a thin additional superconductor prior to the gold contact deposition improves the noise temperature and the bandwidth of the HEB mixers with more than a factor of 2. We obtain a DSB noise temperature of 950 K at 2.5 THz and a Gain bandwidth of 5-6 GHz. For use in real receiver systems we design small volume (0.15x1 micron) HEB mixers with a twin slot antenna. We find that these mixers combine good sensitivity (900 K at 1.6 THz) with low LO power requirement, which is 160 – 240 nW at the Si lens of the mixer. This value is larger than expected from the isothermal technique and the known losses in the lens by a factor of 3-3.5.  
  Address  
  Corporate Author Thesis  
  Publisher SPIE Place of Publication Editor Zmuidzinas, J.; Holland, W.S.; Withington, S.  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference Millimeter and Submillimeter Detectors for Astronomy II  
  Notes Approved no  
  Call Number Serial 1744  
Permanent link to this record
 

 
Author Hubers, H.-W.; Semenov, A.; Richter, H.; Schwarz, M.; Gunther, B.; Smirnov, K.; Gol’tsman, G.; Voronov, B. url  doi
openurl 
  Title (up) Heterodyne receiver for 3-5 THz with hot-electron bolometer mixer Type Conference Article
  Year 2004 Publication Proc. SPIE Abbreviated Journal Proc. SPIE  
  Volume 5498 Issue Pages 579-586  
  Keywords NbN HEB mixers  
  Abstract Heterodyne receivers for applications in astronomy and planetary research need quantum limited sensitivity. In instruments which are currently build for SOFIA and Herschel superconducting hot electron bolometers (HEB) will be used to achieve this goal at frequencies above 1.4 THz. The local oscillator and the mixer are the most critical components for a heterodyne receiver operating at 3-5 THz. The design and performance of an optically pumped THz gas laser optimized for this frequency band will be presented. In order to optimize the performance for this frequency hot electron bolometer mixers with different in-plane dimensions and logarithmic-spiral feed antennas have been investigated. Their noise temperatures and beam patterns were measured. Above 3 THz the best performance was achieved with a superconducting bridge of 2.0 x 0.2 μm2 incorporated in a logarithmic spiral antenna. The DSB noise temperatures were 2700 K, 4700 K and 6400 K at 3.1 THz, 4.3 THz and 5.2 THz, respectively. The results demonstrate that the NbN HEB is very well suited as a mixer for THz heterodyne receivers up to at least 5 THz.  
  Address  
  Corporate Author Thesis  
  Publisher SPIE Place of Publication Editor Zmuidzinas, J.; Holland, W.S.; Withington, S.  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference Millimeter and Submillimeter Detectors for Astronomy II  
  Notes Approved no  
  Call Number Serial 1483  
Permanent link to this record
 

 
Author Baselmans, J. J. A.; Hajenius, M.; Gao, J. R.; Baryshev, A.; Kooi, J.; Klapwijk, T. M.; de Korte, P. A. J.; Voronov, B.; Gol’tsman, G. url  openurl
  Title (up) Hot electron bolometer mixers with improved interfaces: sensitivity, LO power and stability Type Conference Article
  Year 2004 Publication Proc. 15th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 15th Int. Symp. Space Terahertz Technol.  
  Volume Issue Pages 17-24  
  Keywords NbN HEB mixers  
  Abstract We study twin slot antenna coupled NbN hot electron bolometer mixers with an improved contact structure and a small volume, ranging from 1 µm × 0.1 µm to 2 × 0.3 µm. We obtain a DSB receiver noise temperature of 900 K at 1.6 THz and 940 K at 1.9 THz. To explore the practical usability of such small HEB mixers we evaluate the LO power requirement, the sensitivity and the stability. We find that the LO power requirement of the smallest mixers is reduced to about 240 nW at the Si lens of the mixer. This value is larger than expected from the isothermal technique and the known losses in the lens by a factor of 3-3.5. The stability of these receivers is characterized using a measurement of the Allan Variance. We find an Allan time of 0.5 sec. in an 80 MHz bandwidth. A small increase in stability can be reached by using a higher bias at the expense of a significant amount of sensitivity. The stability is sufficient for spectroscopic applications in a 1 MHz bandwidth at a 1 Hz chopping frequency.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1491  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: