toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (up) Loudkov, D.; Tong, C. Y. E.; Blundell, R.; Kaurova, N.; Grishina, E.; Voronov, B.; Gol'tsman, G. openurl 
  Title An investigation of the performance of the superconducting HEB슠mixer as a function of its RF슠embedding impedance Type Journal Article
  Year 2005 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal  
  Volume 15 Issue 2 Pages 472-475  
  Keywords HEB mixer  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher IEEE Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 371  
Permanent link to this record
 

 
Author (up) Loudkov, D.; Tong, C.-Y. E.; Blundell, R.; Kaurova, N.; Grishina, E.; Voronov, B.; Gol’tsman, G. url  doi
openurl 
  Title An investigation of the performance of the superconducting HEB mixer as a function of its RF embedding impedance Type Journal Article
  Year 2005 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.  
  Volume 15 Issue 2 Pages 472-475  
  Keywords waveguide NbN HEB mixers  
  Abstract We have conducted an investigation of the optimal embedding impedance for a waveguide superconducting hot-electron bolometric (HEB) mixer. Three mixer chip designs for 800 GHz, offering nominal embedding resistances of 70 /spl Omega/, 35 /spl Omega/, and 15 /spl Omega/, have been developed. We used both High Frequency Structure Simulator (HFSS) software and scale model impedance measurements in the design process. We subsequently fabricated HEB mixers to these designs using 3-4 nm thick NbN thin film. Receiver noise temperature measurements and Fourier Transform Spectrometer (FTS) scans were performed to determine the optimal combination of embedding impedance and normal-state resistance for a 50 Ohm IF load impedance. A receiver noise temperature of 440 K was measured at a local oscillator frequency 850 GHz for a mixer with normal state resistance of 62 /spl Omega/ incorporated into a circuit offering a nominal embedding impedance of 70 /spl Omega/. We conclude from our data that, for low noise operation, the normal state resistance of the HEB mixer element should be close to the embedding impedance of the mixer mount.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number 1439677 Serial 1464  
Permanent link to this record
 

 
Author (up) Loudkov, D.; Tong, C.-Y. E.; Marrone, D. P.; Ryabchun, S.; Paine, S. N.; Blundell, R. url  openurl
  Title Transmission measurements of infrared filters for low-noise terahertz receiver applications Type Conference Article
  Year 2005 Publication Proc. 16th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 16th Int. Symp. Space Terahertz Technol.  
  Volume Issue Pages 354-357  
  Keywords FTS, Zitex, alkali halide, crystalline quartz, Parylene, polyethylene, IR filters, transmission, THz applications  
  Abstract Infrared (IR) filters are very important to the efficient operation of cryogenic receivers. Usually, such filters are mounted on the radiation shield of the cryostat to reduce the heat load to the 4 K stage. Insufficient filtering may cause the temperature of the mixing element in a receiver to be excessively warm, leading to degradation in sensitivity. These filters should be effective in blocking the room temperature IR radiation from outside the cryostat, yet should be transparent across the desired signal frequency band. In the Terahertz frequency range, which is close to the infrared, it is difficult to find an inexpensive low- loss material that can provide the required IR blocking capacity. We present transmission measurements, made using a Fourier Transform Spectrometer (FTS), of a number of potential infrared filters between 0.4 and 1.6 THz. The filters tested include the widely-used, Teflon-based, Zitex-A and Zitex-G films, alkali halide based infrared filter, and crystalline quartz coated with Parylene, and polyethylene films.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1473  
Permanent link to this record
 

 
Author (up) Loudkov, D.; Tong, C.-Y.E.; Blundell, R.; Kaurova, N.; Grishina, E.; Voronov, B.; Gol’tsman, G. url  openurl
  Title An investigation of the performance of the waveguide superconducting HEB mixer at different RF embedding impedances Type Conference Article
  Year 2005 Publication Proc. 16th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 16th Int. Symp. Space Terahertz Technol.  
  Volume Issue Pages 226-229  
  Keywords waveguide NbN HEB mixers  
  Abstract We have conducted an investigation of the performance of superconducting hot-electron bolometric (HEB) mixer at 800 GHz as a function of the embedding impedance of the waveguide embedding circuit. Using a single half-height mixer block, we have developed three different mixer chip configurations, offering nominal embedding resistances of 70, 35, and 15 Ohms. Both the High Frequency Structure Simulator (HFSS) software and scaled model impedance measurements were employed in the design process. Two batches of HEB mixers were fabricated to these designs using 3-4 nm thick NbN thin film. The mixers were characterized through receiver noise temperature measurements and Fourier Transform Spectrometer (FTS) scans. Briefly, a minimum receiver noise temperature of 440 K was measured at a local oscillator frequency 850 GHz for a mixer of normal state resistance 62 Ohms incorporated into a circuit offering a nominal embedding impedance of 70 Ohms. We conclude from our data that, for low noise operation, the normal state resistance of the HEB mixer element should be close to that of the embedding impedance of the mixer mount.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1472  
Permanent link to this record
 

 
Author (up) Mair, U.; Suttywong, N.; Hübers, H.-W.; Semenov, A. D.; Richter, H.; Wagner, G.; Birk, M. openurl 
  Title Development of 1.8 THz receiver for the TELIS instrument Type Conference Article
  Year 2005 Publication Proc. 16th Int. Symp. Space Terahertz Technol. Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Göteborg, Sweden Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ s @ qo_TELIS_1p8_THz Serial 364  
Permanent link to this record
 

 
Author (up) Marrone, Daniel P.; Raymond Blundell; Edward Tong; Paine, Scott. N.; Denis Loudkov; Jonathan Kawamura; Daniel Luhr; Claudio Barrientos openurl 
  Title Observations in the 1.3 and 1.5 THz atmospheric windows with the Receiver Lab Telescope Type Conference Article
  Year 2005 Publication Proc. 16th Int. Symp. Space Terahertz Technol. Abbreviated Journal  
  Volume Issue Pages 64-67  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Göteborg, Sweden Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ s @ RLT_observ Serial 361  
Permanent link to this record
 

 
Author (up) Meledin, D.; Pantaleev, M.; Pavolotsky, A.; Risacher, C.; Belitsky, V.; Drakinskiy, V.; Cherednichenko, S. openurl 
  Title Balanced waveguide HEB mixer for APEX 1.3 THz receiver Type Conference Article
  Year 2005 Publication Proc. 16th Int. Symp. Space Terahertz Technol. Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Göteborg, Sweden Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ s @ wg_balanced Serial 362  
Permanent link to this record
 

 
Author (up) Milostnaya, I.; Korneev, A.; Minaeva, O.; Rubtsova, I.; Slepneva, S.; Seleznev, V.; Chulkova, G.; Okunev, O.; Smirnov, K.; Voronov, B.; Gol’tsman, G.; Slysz, W.; Kitaygorsky, J.; Cross, A.; Pearlman, A.; Sobolewski, R. url  doi
openurl 
  Title Superconducting nanostructured detectors capable of single photon counting of mid-infrared optical radiation Type Conference Article
  Year 2005 Publication Proc. SPIE Abbreviated Journal Proc. SPIE  
  Volume 5957 Issue Pages 59570A (1 to 9)  
  Keywords SSPD, SNSPD, single-photon detectors, superconductors, superconducting  
  Abstract We report on our progress in research and development of ultrafast superconducting single-photon detectors (SSPDs) based on ultrathin NbN nanostructures. Our SSPDs were made of the 4-nm-thick NbN films with Tc 11 K, patterned as meander-shaped, 100-nm-wide strips, and covering an area of 10×10 μm2. The detectors exploit a combined detection mechanism, where upon a single-photon absorption, a hotspot of excited electrons and redistribution of the biasing supercurrent, jointly produce a picosecond voltage transient signal across the superconducting nanostripe. The SSPDs are typically operated at 4.2 K, but their sensitivity in the infrared radiation range can be significantly improved by lowering the operating temperature from 4.2 K to 2 K. When operated at 2 K, the SSPD quantum efficiency (QE) for visible light photons reaches 30-40%, which is the saturation value limited by the optical absorption of our 4-nm-thick NbN film. With the wavelength increase of the incident photons,the QE of SSPDs decreases significantly, but even at the wavelength of 6 μm, the detector is able to count single photons and exhibits QE of about 10-2 %. The dark (false) count rate at 2 K is as low as 2x10-4 s,-1 which makes our detector essentially a background-limited sensor. The very low dark-count rate results in a noise equivalent power (NEP) below 10-18 WHz-1/2 for the mid-infrared range (6 μm). Further improvement of the SSPD performance in the mid-infrared range can be obtained by substituting NbN for another, lower-Tc materials with a narrow superconducting gap and low quasiparticles diffusivity. The use of such superconductors should shift the cutoff wavelength below 10 μm.  
  Address  
  Corporate Author Thesis  
  Publisher SPIE Place of Publication Editor Rogalski, A.; Dereniak, E.L.; Sizov, F.F.  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference Infrared Photoelectronics  
  Notes Approved no  
  Call Number Serial 1458  
Permanent link to this record
 

 
Author (up) Morozov, D. V.; Smirnov, K. V.; Smirnov, A. V.; Lyakhov, V. A.; Goltsman, G. N. url  doi
openurl 
  Title A millimeter-submillimeter phonon-cooled hot-electron bolometer mixer based on two-dimensional electron gas in an AlGaAs/GaAs heterostructure Type Journal Article
  Year 2005 Publication Semicond. Abbreviated Journal Semicond.  
  Volume 39 Issue 9 Pages 1082-1086  
  Keywords 2D electron gas, AlGaAs/GaAs heterostructures, mixers  
  Abstract Experimental results obtained by studying the main characteristics of a millimeter-submillimeter wave mixer based on the hot-electron effect in a two-dimensional electron gas in a AlGaAs/GaAs heterostructure with a phonon-scattering cooling mechanism for charge carriers are reported. The gain bandwidth of the mixer is 4 GHz, the internal conversion losses are 13 dB, and the optimum local-oscillator power is 0.5 μW (for a mixer area of 1 μm2). It is shown that a millimeter-submillimeter-wave receiver with a noise temperature of 1900 K can be developed on the basis of a AlGaAs/GaAs mixer. This mixer also appears to be promising for use in array receiver elements.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1063-7826 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1463  
Permanent link to this record
 

 
Author (up) Mygind, J.; Samuelsen, M. R.; Koshelets, V. P.; Sobolev, A. S. openurl 
  Title Simple theory for the spectral. linewidth of the mm-wave Josephson flux flow oscillator Type Abstract
  Year 2005 Publication Pi-shift Workshop “Physics of superconducting phase-shift devices” Abbreviated Journal  
  Volume Issue Pages 22-22  
  Keywords SIR  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Ischia, Italy Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 520  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: