toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Yagoubov, P.; van de Stadt, H.; Hoogeveen, R.; Koshelets, V.; Birk, Manfred; Murk, A. url  openurl
  Title OPTICAL DESIGN OF SUB-MILLIMETER SPECTROMETER FOR LIMB SOUNDER Type Journal Article
  Year 2005 Publication International Symposium on Space Terahertz Technology Abbreviated Journal  
  Volume Issue Pages  
  Keywords Cryogenic terahertz heterodyne receiver, remote sensing, TELIS, submillimeter  
  Abstract TELIS (Terahertz and submm Limb Sounder) is a cooperation between DLR (Institute for Remote Sensing Technology, Germany), RAL (Rutherford Appleton Laboratories, UK) and SRON (National Institute for Space Research, the Netherlands), to build a three-channel balloon-borne heterodyne spectrometer for atmospheric research. The three receivers will operate simultaneously at 500 GHz (channel developed by RAL), at 550-650 GHz (SRON in collaboration with IREE), and at 1.8 THz (DLR). The balloon platform on which TELIS will fly also contains a Fourier transform spectrometer: MIPAS-B developed by the IMK (Institute of Meteorology and Climate research of the University of Karlsruhe, Germany). MIPAS-B will simultaneously measure within the range 680 to 2400 cm-1. The combination of the TELIS and MIPAS instruments will provide an unprecedented wealth of scientific data and will also be used to validate other instruments and atmospheric chemistry models. In this paper we present the optical design of TELIS with an emphasis on the 550-650 GHz channel. The main design goal was to generate a high efficiency antenna beam over the full frequency range, with low side lobes and close to diffraction limited angular resolution in the vertical direction at the sky. All these requirements had to be achieved within a small volume and low mass. Design and validation of the optics, as well as estimation of optical components tolerances, was done using commercial software packages ZEMAX and GRASP.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes event_dates=2005-05-31 – 2005-06-03; Approved no  
  Call Number Serial 414  
Permanent link to this record
 

 
Author de Graauw, T.; Caux, E.; Guesten, R.; Helmich, F.; Pearson, J.; Phillips, T. G.; Schieder, R.; Tielens, X.; Saraceno, P.; Stutzki, J.; Wafelbakker, C. K.; Whyborn, N. D. openurl 
  Title The Herschel-heterodyne instrument for the far-infrared (HIFI) Type Conference Article
  Year 2005 Publication Bulletin of the American Astronomical Society Abbreviated Journal  
  Volume Issue Pages 1219  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Bulletin of the American Astronomical Society Abbreviated Series Title  
  Series Volume 37 Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number ref2005AAS...207.3503D Serial 420  
Permanent link to this record
 

 
Author Gao, J. R.; Hovenier, J. N.; Yang, Z. Q.; Baselmans, J. J. A.; Baryshev, A.; Hajenius, M.; Klapwijk, T. M.; Adam, A. J. L.; Klaassen, T. O.; Williams, B. S.; Kumar, S.; Hu, Q.; Reno, J. L. openurl 
  Title Terahertz heterodyne receiver based on a quantum cascade laser and a superconducting bolometer Type Journal Article
  Year 2005 Publication Appl. Phys. Lett. Abbreviated Journal  
  Volume Issue 86 Pages  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes art.num. 244104 Approved no  
  Call Number RPLAB @ s @ qc_lasers_gao Serial 368  
Permanent link to this record
 

 
Author Loudkov, D.; Tong, C. Y. E.; Blundell, R.; Kaurova, N.; Grishina, E.; Voronov, B.; Gol'tsman, G. openurl 
  Title An investigation of the performance of the superconducting HEB슠mixer as a function of its RF슠embedding impedance Type Journal Article
  Year 2005 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal  
  Volume 15 Issue 2 Pages 472-475  
  Keywords HEB mixer  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher IEEE Place of Publication (up) Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 371  
Permanent link to this record
 

 
Author Gol'tsman, Gregory N.; Vachtomin, Yuriy B.; Antipov, Sergey V.; Finkel, Matvey I.; Maslennikov, Sergey N.; Smirnov, Konstantin V.; Polyakov, Stanislav L.; Svechnikov, Sergey I.; Kaurova, Natalia S.; Grishina, Elisaveta V.; Voronov, Boris M. doi  openurl
  Title NbN phonon-cooled hot-electron bolometer mixer for terahertz heterodyne receivers Type Conference Article
  Year 2005 Publication Proc. SPIE Abbreviated Journal Proc. SPIE  
  Volume 5727 Issue Pages 95-106  
  Keywords NbN HEB mixers  
  Abstract We present the results of our studies of NbN phonon-cooled HEB mixers at terahertz frequencies. The mixers were fabricated from NbN film deposited on a high-resistivity Si substrate with an MgO buffer layer. The mixer element was integrated with a log-periodic spiral antenna. The noise temperature measurements were performed at 2.5 THz and at 3.8 THz local oscillator frequencies for the 3 x 0.2 μm2 active area devices. The best uncorrected receiver noise temperatures found for these frequencies are 1300 K and 3100 K, respectively. A water vapour discharge laser was used as the LO source. The largest gain bandwidth of 5.2 GHz was achieved for a mixer based on 2 nm thick NbN film deposited on MgO layer over Si substrate. The gain bandwidth of the mixer based on 3.5 nm NbN film deposited on Si with MgO is 4.2 GHz and the noise bandwidth for the same device amounts to 5 GHz. We also present the results of our research into decrease of the direct detection contribution to the measured Y-factor and a possible error of noise temperature calculation. The use of a square nickel cell mesh as an IR-filter enabled us to avoid the effect of direct detection and measure apparent value of the noise temperature which was 16% less than that obtained using conventional black polyethylene IR-filter.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference Terahertz and Gigahertz Electronics and Photonics IV  
  Notes Approved no  
  Call Number Serial 378  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: