toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Cao, Aiqin; Jiang, L.; Chen, S.H.; Antipov, S.V.; Shi, S.C. doi  openurl
  Title IF gain bandwidth of a quasi-optical NbN superconducting HEB mixer Type Conference Article
  Year 2007 Publication Proc. International conference on microwave and millimeter wave technology Abbreviated Journal (down) Proc. ICMMT  
  Volume Issue Pages 1-3  
  Keywords HEB, mixer, gain bandwidth  
  Abstract In this paper, the intermediate frequency (IF) gain bandwidth of a quasi-optical NbN superconducting hot-electron bolometer (HEB) mixer is investigated at 500 GHz with an IF system incorporating with a frequency down-converting scheme which is able to sweep the IF signal in a frequency range of 0.3-4 GHz. The IF gain bandwidth of the device is measured to be 1.5 GHz when it is biased at a voltage of the minimum noise temperature, and becomes larger when the bias voltage increases.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Builin Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ lobanovyury @ Serial 575  
Permanent link to this record
 

 
Author Kitaygorsky, Jennifer; Komissarov, I.; Jukna, A.; Minaeva, O.; Kaurova, N.; Divochiy, A.; Korneev, A.; Tarkhov, M.; Voronov, B.; Milostnaya, I.; Gol'tsman, G.; Sobolewski, R. url  openurl
  Title Fluctuations in two-dimensional superconducting NbN nanobridges and nanostructures meanders Type Abstract
  Year 2007 Publication Proc. APS March Meeting Abbreviated Journal (down) Proc. APS March Meeting  
  Volume 52 Issue 1 Pages L9.00013  
  Keywords  
  Abstract We have observed fluctuations, manifested as sub-nanosecond to nanosecond transient, millivolt-amplitude voltage pulses, generated in two-dimensional NbN nanobridges, as well as in extended superconducting meander nanostructures, designed for single photon counting. Both nanobridges and nano-stripe meanders were biased at currents close to the critical current and measured in a range of temperatures from 1.5 to 8 K. During the tests, the devices were blocked from all incoming radiation by a metallic enclosure and shielded from any external magnetic fields. We attribute the observed spontaneous voltage pulses to the Kosterlitz-Thouless-type fluctuations, where the high enough applied bias current reduces the binding energy of vortex-antivortex pairs and, subsequently, thermal fluctuations break them apart causing the order parameter to momentarily reduce to zero, which in turn causes a transient voltage pulse. The duration of the voltage pulses depended on the device geometry (with the high-kinetic inductance meander structures having longer, nanosecond, pulses) while their rate was directly related to the biasing current as well as temperature.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1027  
Permanent link to this record
 

 
Author Kopp, Victor I.; Churikov, Victor M.; Zhang, Guoyin; Singer, Jonathan; Draper, Christopher W.; Chao, Norman; Neugroschl, Daniel; Genack, Azriel Z. openurl 
  Title Chiral fiber gratings: perspectives and challenges for sensing applications Type Conference Article
  Year 2007 Publication Proceedings of Third european workshop on optical fibre sensors Abbreviated Journal (down) Proc. 3rd European Workshop on Opt. Fibre Sensors  
  Volume 6619 Issue Pages 66190B-(1-8)  
  Keywords optical fiber gratings, chiral fiber gratings applications, chiral gratings applications, from chiralphotonics  
  Abstract Chiral fiber gratings are produced in a microforming process in which optical fibers with noncircular or nonconcentric cores are twisted as they pass though a miniature oven. Periodic glass structures as stable as the glass material itself are produced with helical pitch that ranges from under a micron to hundreds of microns. The geometry of the fiber cross section determines the symmetry of the resulting structure which in turn determines its polarization selectivity. Single helix structures are polarization insensitive while double helix gratings interact only with a single optical polarization. Both single and double helix gratings may act as a fiber long period grating, coupling the core and cladding modes. The coupling is manifested in a series of narrow dips in the transmission spectrum. The dip position is sensitive to fiber elongation, twist and temperature, and to the refractive index of the surrounding medium. The suitability of chiral gratings for sensing pressure, temperature and liquid levels is investigated. Polarization insensitive single helix silica glass gratings display excellent stability up to temperatures of 6000C, while a pressure sensor with dynamic range of nearly 40 dB is demonstrated in polarization selective double helix gratings.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 855  
Permanent link to this record
 

 
Author Cherednichenko, S.; Drakinskiy, V.; Baubert, J.; Lecomte, B.; Dauplay, F.; Krieg, J.-M.; Delorme, Y.; Feret, A.; Hübers, H.-W.; Semenov, A. D.; Gol’tsman, G. N. url  openurl
  Title 2.5 THz multipixel heterodyne receiver based on NbN HEB mixers Type Abstract
  Year 2007 Publication Proc. 18th Int. Symp. Space Terahertz Technol. Abbreviated Journal (down) Proc. 18th Int. Symp. Space Terahertz Technol.  
  Volume Issue Pages 112  
  Keywords NbN HEB mixers  
  Abstract A 16 pixel heterodyne receiver for 2.5 THz has been developed based on NbN superconducting hot-electron bolometer (HEB) mixers. The receiver uses a quasioptical RF coupling approach where HEB mixers are integrated into double dipole antennas on 1.5μm thick Si3N4 / SiO2 membranes. Spherical mirrors (one per pixel) and backshort distance from the antenna have been used to design the output mixer beam profile. The camera design allows all 16 pixel IF readout in parallel. Measurements of the mixers sensitivity and the input RF band are presented, and compared against calculations.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1419  
Permanent link to this record
 

 
Author Semenov, A.; Richter, H.; Smirnov, A.; Günther, B.; Hübers, H.-W.; Il’in, K.; Siegel, M.; Gol’tsman, G.; Drakinskiy, V.; Merkel, H.; Karamarkovic, J. url  openurl
  Title Development of HEB mixers for GREAT and for security screening Type Abstract
  Year 2007 Publication Proc. 18th Int. Symp. Space Terahertz Technol. Abbreviated Journal (down) Proc. 18th Int. Symp. Space Terahertz Technol.  
  Volume Issue Pages 184  
  Keywords NbN HEB mixers, GREAT  
  Abstract We report the study on the quasioptical coupling efficiency and the gain bandwidth of NbN hot-electron bolometer mixers developed for the 4.7 THz channel of the German receiver for Astronomy at THz-frequencies (GREAT) and for security screening at subterahertz frequencies. Radiation coupling efficiency and directive properties of integrated lens antennas with log-spiral, log-periodic and double-slot planar feeds coupled to a hot-electron bolometer were experimentally studied at frequencies from 1 THz to 6 THz and compared with simulations based on the method of moments and the physical-optics ray tracing. For all studied antennas the modeled spectral dependence of the coupling efficiency fits to the experimental data obtained with both Fourier transform spectroscopy and noise temperature measurements only if the complex impedance of the bolometer is explicitly taken into account. Our experimental data did not indicate any noticeable contribution of the quantum noise to the system noise temperature. The experimentally observed deviation of the beam pattern from the model prediction increases with frequency and is most likely due to a non- ideality of the presently used lenses. Study of the intermediate frequency mixer gain at local oscillator (LO) frequencies between 2.5 THz and 0.3 THz showed an increase of the gain bandwidth at low LO frequencies that was understood as the contribution of the direct interaction of magnetic vortices with the radiation field. We have found that the non- homogeneous hot-spot model more adequately describes variation of the intermediate frequency bandwidth with the applied local oscillator power than any of uniform mixer models. The state-of-the-day performance of the GREAT 4.7-THz channel and the 0.8-THz security scanner will be presented.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1420  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: