toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Reiger, E.; Pan, D.; Slysz, W.; Jukna, A.; Sobolewski, R.; Dorenbos, S.; Zwiller, V.; Korneev, A.; Chulkova, G.; Milostnaya, I.; Minaeva, O.; Gol'tsman, G.; Kitaygorsky, J. url  doi
openurl 
  Title Spectroscopy with nanostructured superconducting single photon detectors Type Journal Article
  Year 2007 Publication (up) IEEE J. Select. Topics Quantum Electron. Abbreviated Journal IEEE J. Select. Topics Quantum Electron.  
  Volume 13 Issue 4 Pages 934-943  
  Keywords SSPD, SNSPD  
  Abstract Superconducting single-photon detectors (SSPDs) are nanostructured devices made from ultrathin superconducting films. They are typically operated at liquid helium temperature and exhibit high detection efficiency, in combination with very low dark counts, fast response time, and extremely low timing jitter, within a broad wavelength range from ultraviolet to mid-infrared (up to 6 mu m). SSPDs are very attractive for applications such as fiber-based telecommunication, where single-photon sensitivity and high photon-counting rates are required. We review the current state-of-the-art in the SSPD research and development, and compare the SSPD performance to the best semiconducting avalanche photodiodes and other superconducting photon detectors. Furthermore, we demonstrate that SSPDs can also be successfully implemented in photon-energy-resolving experiments. Our approach is based on the fact that the size of the hotspot, a nonsuperconducting region generated upon photon absorption, is linearly dependent on the photon energy. We introduce a statistical method, where, by measuring the SSPD system detection efficiency at different bias currents, we are able to resolve the wavelength of the incident photons with a resolution of 50 nm.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1077-260X ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1424  
Permanent link to this record
 

 
Author Torgashin, M. Yu.; Koshelets, V. P.; Dmitriev, P. N.; Ermakov, A. B.; Filippenko, L. V.; Yagoubov, P. A. openurl 
  Title Superconducting integrated receivers based on Nb-AlN-NbN circuits Type Journal Article
  Year 2007 Publication (up) IEEE Trans. Appl. Supercond. Abbreviated Journal  
  Volume 17 Issue 2 Pages 379-382  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ s @ mix_SIR_ieee_trans_2007 Serial 406  
Permanent link to this record
 

 
Author Gol'tsman, G.; Minaeva, O.; Korneev, A.; Tarkhov, M.; Rubtsova, I.; Divochiy, A.; Milostnaya, I.; Chulkova, G.; Kaurova, N.; Voronov, B.; Pan, D.; Kitaygorsky, J.; Cross, A.; Pearlman, A.; Komissarov, I.; Slysz, W.; Wegrzecki, M.; Grabiec, P.; Sobolewski, R. url  doi
openurl 
  Title Middle-infrared to visible-light ultrafast superconducting single-photon detectors Type Journal Article
  Year 2007 Publication (up) IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.  
  Volume 17 Issue 2 Pages 246-251  
  Keywords SSPD, SNSPD  
  Abstract We present an overview of the state-of-the-art of NbN superconducting single-photon detectors (SSPDs). Our devices exhibit quantum efficiency (QE) of up to 30% in near-infrared wavelength and 0.4% at 5 mum, with a dark-count rate that can be as low as 10 -4 s -1 . The SSPD structures integrated with lambda/4 microcavities achieve a QE of 60% at telecommunication, 1550-nm wavelength. We have also developed a new generation of SSPDs that possess the QE of large-active-area devices, but, simultaneously, are characterized by low kinetic inductance that allows achieving short response times and the GHz-counting rate with picosecond timing jitter. The improvements presented in the SSPD development, such as fiber-coupled SSPDs, make our detectors most attractive for high-speed quantum communications and quantum computing.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1051-8223 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 431  
Permanent link to this record
 

 
Author Koshelets, V. P.; Ermakov, A. B.; Filippenko, L. V.; Khudchenko, A. V.; Kiselev, O. S.; Sobolev, A. S.; Torgashin, M. Y.; Yagoubov, P. A.; Hoogeveen, R. W. M.; Wild, W. url  doi
openurl 
  Title Superconducting integrated submillimeter receiver for TELIS Type Journal Article
  Year 2007 Publication (up) IEEE Trans. Appl. Supercond. Abbreviated Journal  
  Volume 17 Issue 2 Pages 336-342  
  Keywords SIR  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1051-8223 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 524  
Permanent link to this record
 

 
Author Torgashin, Mikhail Yu.; Koshelets, Valery P.; Dmitriev, Pavel N.; Ermakov, Andrey B.; Filippenko, Lyudmila V.; Yagoubov, Pavel A. url  doi
openurl 
  Title Superconducting Integrated Receiver Based on Nb-AlN-NbN-Nb Circuits Type Journal Article
  Year 2007 Publication (up) IEEE Trans. Appl. Supercond. Abbreviated Journal  
  Volume 17 Issue 2 Pages 379-382  
  Keywords SIR  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1051-8223 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 525  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: