toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Tretyakov, I. V.; Ryabchun, S. A.; Maslennikov, S. N.; Finkel, M. I.; Kaurova, N. S.; Seleznev, V. A.; Voronov, B. M.; Gol'tsman, G.N. openurl 
  Title NbN HEB mixer: fabrication, noise temperature reduction and characterization Type Conference Article
  Year 2008 Publication Proc. Basic problems of superconductivity Abbreviated Journal  
  Volume Issue (up) Pages  
  Keywords HEB, mixer, noise temperature, conversion gain bandwidth  
  Abstract We demonstrate that in the terahertz region superconducting hot-electron mixers offer the lowest noise temperature, opening the possibility of using HTS's in the future to fabricate these devices. Specifically, a noise temperature of 950 K was measured for the receiver operating at 2.5 THz with a NbN HEB mixer, and a gain bandwidth of 6 GHz was measured at 300 GHz near Tc for the same mixer.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Moscow-Zvenigorod Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 591  
Permanent link to this record
 

 
Author Li, T. F.; Pashkin, Yu. A.; Astafiev, O.; Nakamura, Y.; Tsai, J. S.; Im, H. doi  openurl
  Title High-frequency metallic nanomechanical resonators Type Journal Article
  Year 2008 Publication Appl. Phys. Lett. Abbreviated Journal Appl. Phys. Lett.  
  Volume 92 Issue (up) Pages 043112(1)-043112(3)  
  Keywords nanomechanical resonator, polycrystalline metal films  
  Abstract We developed a technology to fabricate fully metallic doubly clamped beams working as nanomechanical resonators. Measured with a magnetomotive detection scheme, the beams, made of polycrystalline metal films, show as good quality as previously reported ones made of single crystal materials, such as Si, GaAs, AlN, and SiC. Our method is compatible with the conventional fabrication process for nanoscale electronic circuits and thus offers a possibility of easily integrating the beams into superconducting charge and flux qubits and single-electron transistors as well as coupling them to coplanar waveguide resonators.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 621  
Permanent link to this record
 

 
Author de Lange, Gert; Krieg, Jean-Michel; Honingh, Netty; Karpov, Alexandre; Cherednichenko, Sergey openurl 
  Title Performance of the HIFI flight mixers Type Conference Article
  Year 2008 Publication Proc. 19th Int. Symp. Space Terahertz Technol. Abbreviated Journal  
  Volume Issue (up) Pages 98-105  
  Keywords HEB mixer applications, HEB applications  
  Abstract We summarize the technology and final results of the superconducting heterodyne SIS and HEB mixers that are developed for the HIFI instrument. Within HIFI 7 frequency bands cover the frequency range from 480 GHz to 1910 GHz. We describe the different device technologies and optical coupling schemes that are used to cover the frequency bands. The efforts of the different mixer teams that participate in HIFI have contributed to an instrument that will have unprecedented sensitivity and frequency coverage.  
  Address Groningen  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1074  
Permanent link to this record
 

 
Author Saynak, UÄŸur openurl 
  Title Novel rectangular spiral antennas Type Manuscript
  Year 2008 Publication Abbreviated Journal  
  Volume Issue (up) Pages  
  Keywords optical antennas  
  Abstract Round spiral antennas are generally designed by using Archimedean spiral geometries which have linear growth rates. To obtain smaller antennas with nearly the same performance, square spiral Archimedean geometries are also widely used instead. In this study, novel square antennas are proposed, designed and examined. At first two similar but different approaches are employed to design new antennas by considering the design procedure used to obtain log-periodic antennas. Then, the performance of these antennas is improved by considering another property of log-periodic antennas. Simulations are performed by using two different numerical methods which are Finite Difference Time Domain Method (FDTD) and Method of Moments (MoM). The results obtained from the simulations are compared with those of the Archimedean spiral antennas in terms of the frequency dependency of fundamental antenna parameters such as antenna gain and radiation pattern. The simulation results are compared with the ones obtained from the experimental study.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ gujma @ Serial 750  
Permanent link to this record
 

 
Author Tang, Liang; Kocabas, Sukru Ekin; Latif, Salman; Okyay, Ali K.; Ly-Gagnon, Dany-Sebastien; Saraswat, Krishna C.; Miller, David A. B. openurl 
  Title Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna Type Journal Article
  Year 2008 Publication Nature Photonics Abbreviated Journal  
  Volume 2 Issue (up) Pages 226-229  
  Keywords optical antennas  
  Abstract A critical challenge for the convergence of optics and electronics is that the micrometre scale of optics is significantly larger than the nanometre scale of modern electronic devices. In the conversion from photons to electrons by photodetectors, this size incompatibility often leads to substantial penalties in power dissipation, area, latency and noise. A photodetector can be made smaller by using a subwavelength active region; however, this can result in very low responsivity because of the diffraction limit of the light. Here we exploit the idea of a half-wave Hertz dipole antenna (length approx 380 nm) from radio waves, but at near-infrared wavelengths (length approx 1.3 microm), to concentrate radiation into a nanometre-scale germanium photodetector. This gives a polarization contrast of a factor of 20 in the resulting photocurrent in the subwavelength germanium element, which has an active volume of 0.00072 microm3, a size that is two orders of magnitude smaller than previously demonstrated detectors at such wavelengths.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 858  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: