toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Korneev, A.; Divochiy, A.; Marsili, F.; Bitauld, D.; Fiore, A.; Seleznev, V.; Kaurova, N.; Tarkhov, M.; Minaeva, O.; Chulkova, G.; Smirnov, K.; Gaggero, A.; Leoni, R.; Mattioli, F.; Lagoudakis, K.; Benkhaoul, M.; Levy, F.; Goltsman, G. url  doi
openurl 
  Title Superconducting photon number resolving counter for near infrared applications Type Conference Article
  Year 2008 Publication Proc. SPIE Abbreviated Journal Proc. SPIE  
  Volume 7138 Issue Pages 713828 (1 to 5)  
  Keywords (up) PNR SSPD; SNSPD; Nanowire superconducting single-photon detector, ultrathin NbN film, infrared  
  Abstract We present a novel concept of photon number resolving detector based on 120-nm-wide superconducting stripes made of 4-nm-thick NbN film and connected in parallel (PNR-SSPD). The detector consisting of 5 strips demonstrate a capability to resolve up to 4 photons absorbed simultaneously with the single-photon quantum efficiency of 2.5% and negligibly low dark count rate.  
  Address  
  Corporate Author Thesis  
  Publisher Spie Place of Publication Editor Tománek, P.; Senderáková, D.; Hrabovský, M.  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number 10.1117/12.818079 Serial 1241  
Permanent link to this record
 

 
Author Kawano, Yukio; Ishibashi, Koji url  doi
openurl 
  Title An on-chip near-field terahertz probe and detector Type Journal Article
  Year 2008 Publication Nature Photonics Abbreviated Journal Nature Photon  
  Volume 2 Issue 10 Pages 618-621  
  Keywords (up) single molecule, terahertz, THz, near-field, microscopy, imaging, 2DEG, GaAs/AlGaAs, detector, applications  
  Abstract The advantageous properties of terahertz waves, such as their transmission through objects opaque to visible light, are attracting attention for imaging applications. A promising approach for achieving high spatial resolution is the use of near-field imaging. Although this method has been well established in the visible and microwave regions, it is challenging to perform in the terahertz region. In the terahertz techniques investigated to date, detectors have been located remotely from the probe, which degrades sensitivity, and the influence of far-field waves is unavoidable. Here we present a new integrated detection device for terahertz near-field imaging in which all the necessary detection components — an aperture, a probe and a terahertz detector — are integrated on one semiconductor chip, which is cryogenically cooled. This scheme allows highly sensitive, high-resolution detection of the evanescent field alone and promises new capabilities for high-resolution terahertz imaging.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1749-4885 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 570  
Permanent link to this record
 

 
Author Shitov, S. V.; Inatani, J.; Shan, W.-L.; Takeda, M; Wang, Z.; Uvarov, A. V.; Ermakov, A. B.; Uzawa, Y. openurl 
  Title Measurement of emissivity of the ALMA antenna panel at 840 GHz using NbN-based heterodyne SIS receiver Type Conference Article
  Year 2008 Publication Proc. 19th Int. Symp. Space Terahertz Technol. Abbreviated Journal  
  Volume Issue Pages 263-266  
  Keywords (up) SIS mixer, reflection, emissivity, mirror, space telescope, space observatory  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 580  
Permanent link to this record
 

 
Author Feautrier, P.; le Coarer, E.; Espiau de Lamaestre, R.; Cavalier, P.; Maingault, L.; Villégier, J-C.; Frey, L.; Claudon, J.; Bergeard, N.; Tarkhov, M.; Poizat, J-P. openurl 
  Title High-speed superconducting single photon detectors for innovative astronomical applications Type Conference Article
  Year 2008 Publication J. Phys.: Conf. Ser. Abbreviated Journal J. Phys.: Conf. Ser.  
  Volume 97 Issue 1 Pages 10  
  Keywords (up) SSPD  
  Abstract Superconducting Single Photon Detectors (SSPD) are now mature enough to provide extremely interesting detector performances in term of sensitivity, speed, and geometry in the visible and near infrared wavelengths. Taking advantage of recent results obtained in the Sinphonia project, the goal of our research is to demonstrate the feasibility of a new family of micro-spectrometers, called SWIFTS (Stationary Wave Integrated Fourier Transform Spectrometer), associated to an array of SSPD, the whole assembly being integrated on a monolithic sapphire substrate coupling the detectors array to a waveguide injecting the light. This unique association will create a major breakthrough in the domain of visible and infrared spectroscopy for all applications where the space and weight of the instrument is limited. SWIFTS is an innovative way to achieve very compact spectro-detectors using nano-detectors coupled to evanescent field of dielectric integrated optics. The system is sensitive to the interferogram inside the dielectric waveguide along the propagation path. Astronomical instruments will be the first application of such SSPD spectrometers. In this paper, we describes in details the fabrication process of our SSPD built at CEA/DRFMC using ultra-thin NbN epitaxial films deposited on different orientations of Sapphire substrates having state of the art superconducting characteristics. Electron beam lithography is routinely used for patterning the devices having line widths below 200 nm and down to 70 nm. An experimental set-up has been built and used to test these SSPD devices and evaluate their photon counting performances. Photon counting performances of our devices have been demonstrated with extremely low dark counts giving excellent signal to noise ratios. The extreme compactness of this concept is interesting for space spectroscopic applications. Some new astronomical applications of such concept are proposed in this paper.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ gujma @ Serial 648  
Permanent link to this record
 

 
Author Divochiy, Aleksander; Marsili, Francesco; Bitauld, David; Gaggero, Alessandro; Leoni, Roberto; Mattioli, Francesco; Korneev, Alexander; Seleznev, Vitaliy; Kaurova, Nataliya; Minaeva, Olga; Gol'tsman, Gregory; Lagoudakis, Konstantinos G.; Benkhaoul, Moushab; Lévy, Francis; Fiore, Andrea url  doi
openurl 
  Title Superconducting nanowire photon-number-resolving detector at telecommunication wavelengths Type Journal Article
  Year 2008 Publication Nat. Photon. Abbreviated Journal Nat. Photon.  
  Volume 2 Issue 5 Pages 302-306  
  Keywords (up) SSPD, photon-number-resolving  
  Abstract Optical-to-electrical conversion, which is the basis of the operation of optical detectors, can be linear or nonlinear. When high sensitivities are needed, single-photon detectors are used, which operate in a strongly nonlinear mode, their response being independent of the number of detected photons. However, photon-number-resolving detectors are needed, particularly in quantum optics, where n-photon states are routinely produced. In quantum communication and quantum information processing, the photon-number-resolving functionality is key to many protocols, such as the implementation of quantum repeaters1 and linear-optics quantum computing2. A linear detector with single-photon sensitivity can also be used for measuring a temporal waveform at extremely low light levels, such as in long-distance optical communications, fluorescence spectroscopy and optical time-domain reflectometry. We demonstrate here a photon-number-resolving detector based on parallel superconducting nanowires and capable of counting up to four photons at telecommunication wavelengths, with an ultralow dark count rate and high counting frequency.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 916  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: