|   | 
Details
   web
Records
Author Korneev, A.; Divochiy, A.; Tarkhov, M.; Minaeva, O.; Seleznev, V.; Kaurova, N.; Voronov, B.; Okunev, O.; Chulkova, G.; Milostnaya, I.; Smirnov, K.; Gol’tsman, G.
Title Superconducting NbN-nanowire single-photon detectors capable of photon number resolving Type Conference Article
Year 2008 Publication Supercond. News Forum Abbreviated Journal Supercond. News Forum
Volume (down) Issue Pages
Keywords PNR SSPD, SNSPD
Abstract We present our latest generation of ultra-fast superconducting NbN single-photon detectors (SSPD) capable of photon-number resolving (PNR). The novel SSPDs combine 10 μm x 10 μm active area with low kinetic inductance and PNR capability. That resulted in significantly reduced photoresponse pulse duration, allowing for GHz counting rates. The detector’s response magnitude is directly proportional to the number of incident photons, which makes this feature easy to use. We present experimental data on the performance of the PNR SSPDs. These detectors are perfectly suited for fibreless free-space telecommunications, as well as for ultra-fast quantum cryptography and quantum computing.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Reference No. ST34, paper # 012307, eventually not pulished (skipped) at https://iopscience.iop.org/issue/0953-2048/21/1 Approved no
Call Number RPLAB @ sasha @ korneevsuperconducting Serial 1046
Permanent link to this record
 

 
Author Sáysz, Wojciech; Guziewicz, Marek; Bar, Jan; Wegrzecki, Maciej; Grabiec, Piotr; Grodecki, Remigiusz; Wegrzecka, Iwona; Zwiller, Val; Milosnaya, Irina; Voronov, Boris; Gol’tsman, Gregory; Kitaygorsky, Jen; Sobolewski, Roman
Title Superconducting NbN nanostructures for single photon quantum detectors Type Abstract
Year 2008 Publication Proc. 7-th Int. Conf. Ion Implantation and Other Applications of Ions and Electrons Abbreviated Journal Proc. 7-th Int. Conf. Ion Implantation and Other Applications of Ions and Electrons
Volume (down) Issue Pages 160
Keywords SSPD, SNSPD
Abstract Practical quantum systems such as quantum communication (QC) or quantum measurement systems require detectors with high speed, high sensitivity, high quantum efficiency (QE), and short deadtimes along with precise timing characteristics and low dark counts. Superconducting single photon detectors (SSPDs) based on ultrathin meander type NbN nanostripes (operated at T=2-5K) are a new and highly promising type of devices fulfilling above requirements. In this paper we present results of the SSPDs nanostructure technological optimization. The base for our detector is thin-film (4nm) NbN layer deposited on 350- P m-thick sapphire substrate The active element of the detector is a meander- nanostructure made of 4-nm-thick and 100-nm-wide NbN stripe, covering 10 u 10 P m 2 area with the filling factor ~0,5. The NbN superconducting films were deposited on sapphire substrates by DC reactive magnetron sputtering whereas the meander element of the detector was patterned by the direct electron-beam lithography followed by reactive-ion etching. To enhance the SSPD efficiency at Ȝ = 1.55 P m, we have performed an approach to increase the absorption of the detector by integrating it with optical resonant cavity. An optical microcavity optimized for absorption of 1.55 P m photons was designed as an one-mirror resonator consisting of a Ȝ/4 dielectric layer and a metallic mirror. The microcavity was deposited on the top of the NbN SSPD meander. The resonator was formed by the dielectric SiO 2 layer and metal mirror made of gold or palladium. Microcavity layers were deposited using a magnetron sputtering system.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1409
Permanent link to this record
 

 
Author Cherednichenko, S.; Drakinskiy, V.; Lecomte, B.; Dauplay, F.; Krieg, J.-M.; Delorme, Y.; Feret, A.; Hübers, H.-W.; Semenov, A.D.; Gol’tsman, G.N.
Title Terahertz heterodyne array based on NbN HEB mixers Type Abstract
Year 2008 Publication Proc. 19th Int. Symp. Space Terahertz Technol. Abbreviated Journal
Volume (down) Issue Pages 43
Keywords NbN HEB mixers array
Abstract A 16 pixel heterodyne receiver for 2.5 THz is been developed based on NbN superconducting hot-electron bolometer (HEB) mixers. The receiver uses a quasioptical RF coupling approach where HEB mixers are integrated into double dipole antennas on 1.5μm thick Si3N4 / SiO2 membranes. Miniature mirrors (one per pixel) and back short for the antenna were used to design the output mixer beam profile. The camera design allows all 16 pixel IF readout in parallel. The gain bandwidth of the HEB mixers on Si3N4 / SiO 2 membranes was found to be about 3 GHz, when an MgO buffer layers is applied on the membrane. We will also present the progress in the camera heterodyne tests.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1411
Permanent link to this record
 

 
Author Wild, Wolfgang; Baryshev, Andrey; de Graauw, Thijs; Kardashev, Nikolay; Likhachev, Sergey; Goltsman, Gregory; Koshelets, Valery
Title Instrumentation for Millimetron – a large space antenna for THz astronomy Type Conference Article
Year 2008 Publication Proc. 19th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 19th Int. Symp. Space Terahertz Technol.
Volume (down) Issue Pages 186-191
Keywords Millimetron space observatory, VLBI
Abstract Millimetron is a Russian-led 12m diameter submillimeter and far-infrared space observatory which is included in the Space Plan of the Russian Federation and funded for launch after 2015. With its large collecting area and state-of-the-art receivers, it will enable unique science and allow at least one order of magnitude improvement with respect to the Herschel Space Observatory. Millimetron is currently in a conceptual design phase carried out by the Astro Space Center in Moscow and SRON Netherlands Institute for Space Research. It will use a passively cooled deployable antenna with a high-precision central 3.5m diameter mirror and high- precision antenna petals. The antenna is specified for observations up to ~2 THz over the whole 12m diameter, and to higher frequencies using the central 3.5m solid mirror. Millimetron will be operated in two basic observing modes: as a single-dish observatory, and as an element of a ground-space VLBI system. As single-dish, angular resolutions on the order of 3 to 12 arcsec will be achieved and spectral resolutions of up to 10 6 employing heterodyne techniques. As VLBI antenna, the chosen elliptical orbit will provide extremely large VLBI baselines resulting in micro-arcsec angular resolution. The scientific payload will consist of heterodyne and direct detection instruments covering the most important sub-/millimeter spectral regions (including some ALMA bands) and will build on the Herschel and ALMA heritage.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1412
Permanent link to this record