|   | 
Details
   web
Records
Author Bonifas, Andrew P.; McCreery, Richard L.
Title ‘Soft’ Au, Pt and Cu contacts for molecular junctions through surface-diffusion-mediated deposition Type Journal Article
Year 2010 Publication Nature Nanotechnology Abbreviated Journal Nat. Nanotech.
Volume 5 Issue (down) 8 Pages 612–617
Keywords
Abstract Virtually all types of molecular electronic devices depend on electronically addressing a molecule or molecular layer through the formation of a metallic contact. The introduction of molecular devices into integrated circuits will probably depend on the formation of contacts using a vapour deposition technique, but this approach frequently results in the metal atoms penetrating or damaging the molecular layer. Here, we report a method of forming 'soft' metallic contacts on molecular layers through surface-diffusion-mediated deposition, in which the metal atoms are deposited remotely and then diffuse onto the molecular layer, thus eliminating the problems of penetration and damage. Molecular junctions fabricated by this method exhibit excellent yield (typically >90%) and reproducibility, and allow examination of the effects of molecular-layer structure, thickness and contact work function.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes SSPD Approved no
Call Number RPLAB @ gujma @ Serial 682
Permanent link to this record
 

 
Author Kok, Pieter
Title Quantum optics: Entangled photons report for duty Type Journal Article
Year 2010 Publication Nature Photonics Abbreviated Journal Nat. Photon.
Volume 4 Issue (down) 8 Pages 504-505
Keywords fromIPMRAS
Abstract Entangled photons are a key ingredient in optical quantum technologies, but researchers have so far been unable to produce a single pair of entangled photons. Now, two groups from China and Austria independently report just that, with a technique that avoids the need to infer entanglement from detection signatures.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ gujma @ Serial 772
Permanent link to this record
 

 
Author Feofanov, A. K.; Oboznov, V. A.; Bol'Ginov, V. V.; Lisenfeld, J.; Poletto, S.; Ryazanov, V. V.; Rossolenko, A. N.; Khabipov, M.; Balashov, D.; Zorin, A. B.; Dmitriev, P. N.; Koshelets, V. P.; Ustinov, A. V.
Title Implementation of superconductor/ferromagnet/ superconductor Type Journal Article
Year 2010 Publication Nature Physics Abbreviated Journal Nat. Phys.
Volume 6 Issue (down) 8 Pages 593-597
Keywords fromIPMRAS
Abstract High operation speed and low energy consumption may allow the superconducting digital single-flux-quantum circuits to outperform traditional complementary metal-oxide-semiconductor logic. The remaining major obstacle towards high element densities on-chip is a relatively large cell size necessary to hold a magnetic flux quantum Φ0. Inserting a π-type Josephson junction in the cell is equivalent to applying flux Φ0/2 and thus makes it possible to solve this problem. Moreover, using π-junctions in superconducting qubits may help to protect them from noise. Here we demonstrate the operation of three superconducting circuits-two of them are classical and one quantum-that all utilize such π-phase shifters realized using superconductor/ferromagnet/superconductor sandwich technology. The classical circuits are based on single-flux-quantum cells, which are shown to be scalable and compatible with conventional niobium-based superconducting electronics. The quantum circuit is a π-biased phase qubit, for which we observe coherent Rabi oscillations. We find no degradation of the measured coherence time compared to that of a reference qubit without a π-junction.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ gujma @ Serial 805
Permanent link to this record
 

 
Author Zinoni, C.; Alloing, B.; Li, L. H.; Marsili, F.; Fiore, A.; Lunghi, L.; Gerardino, A.; Vakhtomin, Y. B.; Smirnov, K. V.; Gol’tsman, G. N.
Title Erratum: “Single photon experiments at telecom wavelengths using nanowire superconducting detectors” [Appl. Phys. Lett. 91, 031106 (2007)] Type Journal Article
Year 2010 Publication Appl. Phys. Lett. Abbreviated Journal Appl. Phys. Lett.
Volume 96 Issue (down) 8 Pages 089901
Keywords SSPD, SNSPD, erratum
Abstract A calculation error was made in the original publication of this letter. The error was in the calculation of the noise equivalent power (NEP) values for the avalanche photodiode detector (APD) and the superconducting single photon detector (SSPD), the incorrect values were plotted on the right axis in Fig. 1(b). The correct NEP values were calculated with the same equation reported in the original letter and the revised Fig. 1(b) is shown below. The other conclusions of the paper remain unaltered.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1395
Permanent link to this record
 

 
Author Freer, Erik M.; Grachev, Oleg; Duan, Xiangfeng; Martin, Samuel; Stumbo, David P.
Title High-yield self-limiting single-nanowire assembly with dielectrophoresis Type Journal Article
Year 2010 Publication Nature Nanotechnology Abbreviated Journal Nat. Nanotech.
Volume 5 Issue (down) 7 Pages 525–530
Keywords
Abstract Single-crystal nanowire transistors and other nanowire-based devices could have applications in large-area and flexible electronics if conventional top-down fabrication techniques can be integrated with high-precision bottom-up nanowire assembly. Here, we extend dielectrophoretic nanowire assembly to achieve a 98.5% yield of single nanowires assembled over 16,000 patterned electrode sites with submicrometre alignment precision. The balancing of surface, hydrodynamic and dielectrophoretic forces makes the self-assembly process controllable, and a hydrodynamic force component makes it self-limiting. Our approach represents a methodology to quantify nanowire assembly, and makes single nanowire assembly possible over an area limited only by the ability to reproduce process conditions uniformly.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes SSPD Approved no
Call Number RPLAB @ gujma @ Serial 683
Permanent link to this record