|   | 
Details
   web
Records
Author Lydersen, Lars; Wiechers, Carlos; Wittmann, Christoffer; Elser, Dominique; Skaar, Johannes; Makarov, Vadim
Title Thermal blinding of gated detectors in quantum cryptography Type Journal Article
Year 2010 Publication Optics Express Abbreviated Journal Opt. Express
Volume 18 Issue 26 Pages 27938-27954
Keywords quantum cryptography; QKD; hacking; SPD; APD
Abstract It has previously been shown that the gated detectors of two commercially available quantum key distribution (QKD) systems are blindable and controllable by an eavesdropper using continuous-wave illumination and short bright trigger pulses, manipulating voltages in the circuit [L. Lydersen et al., Nat. Photonics DOI:10.1038/nphoton.2010.214]. This allows for an attack eavesdropping the full raw and secret key without increasing the quantum bit error rate (QBER). Here we show how thermal effects in detectors under bright illumination can lead to the same outcome. We demonstrate that the detectors in a commercial QKD system Clavis2 can be blinded by heating the avalanche photo diodes (APDs) using bright illumination, so-called thermal blinding. Further, the detectors can be triggered using short bright pulses once they are blind. For systems with pauses between packet transmission such as the plug-and-play systems, thermal inertia enables Eve to apply the bright blinding illumination before eavesdropping, making her more difficult to catch.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ gujma @ Serial (up) 729
Permanent link to this record
 

 
Author Kosako, Terukazu; Kadoya, Yutaka; Hofmann, Holger F.
Title Directional control of light by a nano-optical Yagi–Uda antenna Type Journal Article
Year 2010 Publication Nature Photonics Abbreviated Journal Nat. Photon.
Volume 4 Issue Pages 312 - 315
Keywords optical antennas
Abstract The plasmon resonance of metal nanoparticles can direct light from optical emitters in much the same way that radiofrequency antennas direct the emission from electrical circuits. Recently, rapid progress has been made in the realization of single-element antennas for optical waves. Because most of these devices are designed to optimize the local near-field coupling between the antenna and an emitter, the possibility of modifying the spatial radiation pattern has not yet received as much attention. In the radiofrequency regime, a typical antenna design for high directivity is the Yagi–Uda antenna, which essentially consists of a one-dimensional array of antenna elements driven by a single feed element. By fabricating a corresponding array of nanoparticles, similar radiation patterns can be obtained in the optical regime. Here, we present the experimental demonstration of directional control of radiation from a nano-optical Yagi–Uda antenna composed of appropriately tuned gold nanorods.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ gujma @ Serial (up) 747
Permanent link to this record
 

 
Author Brida, G.; Genovese, M.; Ruo Berchera, I.
Title Experimental realization of sub-shot-noise quantum imaging Type Journal Article
Year 2010 Publication Nature Photonics Abbreviated Journal Nat. Photon.
Volume 4 Issue 4 Pages 227-230
Keywords fromIPMRAS
Abstract The properties of quantum states have led to the development of new technologies, ranging from quantum information to quantum metrology. A recent field of research to emerge is quantum imaging, which aims to overcome the limits of classical imaging by making use of the spatial properties of quantum states of light . In particular, quantum correlations between twin beams represent a fundamental resource for these studies. One of the most interesting proposed schemes takes advantage of the spatial quantum correlations between parametric down-conversion light beams to realize sub-shot-noise imaging of weak absorbing objects, leading ideally to noise-free imaging. Here, we present the first experimental realization of this scheme, showing its potential to achieve a larger signal-to-noise ratio than classical imaging methods. This work represents the starting point for this quantum technology, which we anticipate will have applications when there is a requirement for low-photon-flux illumination (for example for use with biological samples).
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ gujma @ Serial (up) 771
Permanent link to this record
 

 
Author Kok, Pieter
Title Quantum optics: Entangled photons report for duty Type Journal Article
Year 2010 Publication Nature Photonics Abbreviated Journal Nat. Photon.
Volume 4 Issue 8 Pages 504-505
Keywords fromIPMRAS
Abstract Entangled photons are a key ingredient in optical quantum technologies, but researchers have so far been unable to produce a single pair of entangled photons. Now, two groups from China and Austria independently report just that, with a technique that avoids the need to infer entanglement from detection signatures.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ gujma @ Serial (up) 772
Permanent link to this record
 

 
Author Hanneke, D.; Home, J. P.; Jost, J. D.; Amini, J. M.; Leibfried, D.; Wineland, D. J.
Title Realization of a programmable two-qubit quantum processor Type Journal Article
Year 2010 Publication Nature Physics Abbreviated Journal Nat. Phys.
Volume 6 Issue 1 Pages 13-16
Keywords fromIPMRAS
Abstract The universal quantum computer is a device capable of simulating any physical system and represents a major goal for the field of quantum information science. In the context of quantum information, `universal' refers to the ability to carry out arbitrary unitary transformations in the system's computational space. Combining arbitrary single-quantum-bit (qubit) gates with an entangling two-qubit gate provides a set of gates capable of achieving universal control of any number of qubits, provided that these gates can be carried out repeatedly and between arbitrary pairs of qubits. Although gate sets have been demonstrated in several technologies, they have so far been tailored towards specific tasks, forming a small subset of all unitary operators. Here we demonstrate a quantum processor that can be programmed with 15 classical inputs to realize arbitrary unitary transformations on two qubits, which are stored in trapped atomic ions. Using quantum state and process tomography, we characterize the fidelity of our implementation for 160 randomly chosen operations. This universal control is equivalent to simulating any pairwise interaction between spin-1/2 systems. A programmable multiqubit register could form a core component of a large-scale quantum processor, and the methods used here are suitable for such a device.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ gujma @ Serial (up) 801
Permanent link to this record