|   | 
Details
   web
Records
Author Maslennikova, Anna; Tretyakov, Ivan; Ryabchun, Sergey; Finkel, Matvey; Kaurova, Natalia; Voronov, Boris; Gol’tsman, Gregory
Title Gain bandwidth and noise temperature of NbN HEB mixers with simultaneous phonon and diffusion cooling Type Abstract
Year 2010 Publication Proc. 21th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 21th Int. Symp. Space Terahertz Technol.
Volume (down) Issue Pages 218-219
Keywords
Abstract The space observatory Millimetron will be operating in the millimeter, sub-millimeter and infrared ranges using a 12-m cryogenic telescope in a single-dish mode, and as an interferometer with the space-earth and space-space baselines (the latter after the launch of the second identical space telescope). The observatory will allow performing astronomical observations with an unprecedented sensitivity (down to nJy level) in the single-dish mode, and observations with a high angular resolution in the interferometer mode. The total spectral range 20 μm – 2 cm is separated into 10 bands. HEB mixers with two cooling channels (diffusion and phonon) have been chosen to be the detectors of choice of the system covering the range from 1 THz to 6 THz as the best detectors in terahertz receivers. This type of HEB has already shown good work in the terahertz range. A gain bandwidth of 6 GHz at an LO frequency of 300 GHz and a noise temperature of 750 K at an LO frequency of 2.5 THz are the best values for HEB mixers with two cooling channels [1]. Theoretical estimations predict a bandwidth up to 12 GHz. Reaching such good result demands more systematic and thorough research. We present the results of the gain bandwidth and noise temperature measurements for superconducting hot- electron bolometer mixers with two cooling channels. These characteristics of the devices of lengths varying from 50 to 200 nm were measured for the purposes of Millimetron at frequencies of 600 GHz, 2.5 THz, and 3.8 THz. For gain bandwidth measurements we use two BWO’s operating at 600 GHz: one as the signal and the second as the LO. The noise temperature measurements were performed using a gas discharge laser as the LO and blackbodies at 77 K and 295 K as input signals. The devices studied consist of 3.5-nm-thick NbN bridges connected to thick (10 nm) high conductivity Au leads fabricated in situ. This method of fabricating devices has already proved promising by opening the diffusion cooling channel. [2] Fig. 1 shows a SEM photograph of a log-spiral antenna with an HEB at its apex. Fig. 1. Left: a SEM photograph of a log-spiral antenna with an HEB at its apex; right: a close-up of the HEB at the antenna apex. [1] S. A. Ryabchun, I. V. Tretyakov, M. I. Finkel, S. N. Maslennikov, N. S. Kaurova, V. A. Seleznev, B. M. Voronov, and G. N. Gol’tsman, NbN phonon-cooled hot-electron bolometer mixer with additional diffusion cooling, Proc. of the 20 th Int. Symp. Space. Technol., Charlottesville, Virginia, USA, April 20 – 22, 2009. 218[2] S. A. Ryabchun * , I. V. Tretyakov, M. I. Finkel, S. N. Maslennikov, N. S. Kaurova, V. A. Seleznev, B. M. Voronov and G. N. Goltsman, Fabrication and characterisation of NbN HEB mixers with in situ gold contacts, Proc. of the 19 th Int. Symp. Space. Technol., Groningen, The Netherlands, April 28-30, 2008
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1393
Permanent link to this record
 

 
Author Lobanov, Y. V.; Tong, Cheuk-Yu E.; Hedden, A. S.; Blundell, R.; Gol'tsman, G. N.
Title Microwave-assisted슠measurement슠of the슠frequency슠response슠of슠terahertz슠HEB슠mixers슠with a슠fourier슠transform슠spectrometer Type Conference Article
Year 2010 Publication 21st International Symposium on Space Terahertz Technology Abbreviated Journal 21st ISSTT
Volume (down) Issue Pages 420-423
Keywords HEB mixer
Abstract We describe a novel method of operation of the HEB direct detector for use with a Fourier Transform Spectrometer. Instead of elevating the bath temperature, we have measured the RF response of waveguide HEB mixers by applying microwave radiation to select appropriate bias conditions. In our experiment, a microwave signal is injected into the HEB mixer via its IF port. By choosing an appropriate injection level, the device can be operated close to the desired operating point. Furthermore, we have shown that both thermal biasing and microwave injection can reproduce the same spectral response of the HEB mixer. However, with the use of microwave injection, there is no need to wait for the mixer to reach thermal equilibrium, so characterisation can be done in less time. Also, the liquid helium consumption for our wet cryostat is also reduced. We have demonstrated that the signalto-noise ratio of the FTS measurements can be improved with microwave injection.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ gujma @ Serial 725
Permanent link to this record
 

 
Author Doerr, C.R.; Zhang, C.; Winzer, P.J.
Title Monolithic InP multi-wavelength coherent receiver Type Conference Article
Year 2010 Publication Conference on optical fiber communication, collocated national fiber optic engineers conference Abbreviated Journal Conf. OFC/NFOEC
Volume (down) Issue Pages 1-3
Keywords InP balanced detector, waveguide grating, polarization splitter, from chiralphotonics
Abstract We propose and demonstrate a novel four-channel monolithic polarization-diversity dual-quadrature coherent receiver with balanced detection in InP. It uses an interleave-chirped arrayed waveguide grating that acts simultaneously as a demultiplexer, 90° hybrid, and polarization splitter.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 851
Permanent link to this record
 

 
Author Lee, B. G.; Doany, F. E.; Assefa, S.; Green, W.; Yang, M.; Schow, C. L.; Jahnes, C. V.; Zhang, S.; Singer, J.; Kopp, V. I.; Kash, J. A.; Vlasov, Y. A.
Title 20-μm-pitch eight-channel monolithic fiber array coupling 160 Gb/s/channel to silicon nanophotonic chip Type Conference Article
Year 2010 Publication Conf. OFC/NFOEC Abbreviated Journal Conf. OFC/NFOEC
Volume (down) Issue Pages 1-3
Keywords spot size converters, SSC, optical waveguides, optical fiber waveguides, ultra-dense silicon waveguide arrays, silicon waveguides, waveguide arrays, from chiralphotonics
Abstract A multichannel tapered coupler interfacing standard 250-μm-pitch low-NA polarization-maintaining fiber arrays with ultra-dense 20-μm-pitch high-NA silicon waveguides is designed, fabricated, and tested, demonstrating coupling losses below 1 dB and injection bandwidths of 160 Gb/s/channel.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference Conference on optical fiber communication, collocated national fiber optic engineers conference
Notes Approved no
Call Number Serial 852
Permanent link to this record
 

 
Author Diana Prado Lopes Aude
Title Modeling superconductors using surface impedance technique Type Book Whole
Year 2010 Publication MIT Abbreviated Journal MIT
Volume (down) Issue Pages
Keywords homogeneous isotropic BCS superconductor complex conductivity superconductor surface impedance
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 938
Permanent link to this record