|   | 
Details
   web
Records
Author Marsili, Francesco; Najafi, Faraz; Dauler, Eric; Bellei, Francesco; Hu, Xiaolong; Csete, Maria; Molnar, Richard J.; Berggren, Karl K.
Title Single-photon detectors based on ultranarrow superconducting nanowires Type Journal Article
Year 2011 Publication Nano Letters Abbreviated Journal (up) Nano Lett.
Volume 11 Issue 5 Pages 2048–2053
Keywords SNSPD
Abstract We report efficient single-photon detection (η = 20% at 1550 nm wavelength) with ultranarrow (20 and 30 nm wide) superconducting nanowires, which were shown to be more robust to constrictions and more responsive to 1550 nm wavelength photons than standard superconducting nanowire single-photon detectors, based on 90 nm wide nanowires. We also improved our understanding of the physics of superconducting nanowire avalanche photodetectors, which we used to increase the signal-to-noise ratio of ultranarrow-nanowire detectors by a factor of 4, thus relaxing the requirements on the read-out circuitry and making the devices suitable for a broader range of applications.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ gujma @ Serial 659
Permanent link to this record
 

 
Author Mitin, Vladimir; Antipov, Andrei; Sergeev, Andrei; Vagidov, Nizami; Eason, David; Strasser, Gottfried
Title Quantum Dot Infrared Photodetectors: Photoresponse Enhancement Due to Potential Barriers Type Journal Article
Year 2011 Publication Nanoscale Research Letters Abbreviated Journal (up) Nanoscale res lett
Volume 6 Issue 1 Pages 6
Keywords Quantum dots; Infrared detectors; Photoresponse; Doping; Potential barriers; Capture processes
Abstract Potential barriers around quantum dots (QDs) play a key role in kinetics of photoelectrons. These barriers are always created, when electrons from dopants outside QDs fill the dots. Potential barriers suppress the capture processes of photoelectrons and increase the photoresponse. To directly investigate the effect of potential barriers on photoelectron kinetics, we fabricated several QD structures with different positions of dopants and various levels of doping. The potential barriers as a function of doping and dopant positions have been determined using nextnano3 software. We experimentally investigated the photoresponse to IR radiation as a function of the radiation frequency and voltage bias. We also measured the dark current in these QD structures. Our investigations show that the photoresponse increases ~30 times as the height of potential barriers changes from 30 to 130 meV.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ gujma @ Serial 712
Permanent link to this record
 

 
Author Peruzzo, Alberto; Laing, Anthony; Politi, Alberto; Rudolph, Terry; O'Brien, Jeremy L.
Title Multimode quantum interference of photons in multiport integrated devices Type Journal Article
Year 2011 Publication Nature Communications Abbreviated Journal (up) Nat. Comm.
Volume 2 Issue 224 Pages 6
Keywords fromIPMRAS
Abstract Photonics is a leading approach in realizing future quantum technologies and recently, optical waveguide circuits on silicon chips have demonstrated high levels of miniaturization and performance. Multimode interference (MMI) devices promise a straightforward implementation of compact and robust multiport circuits. Here, we show quantum interference in a 2×2 MMI coupler with visibility of V=95.6+/-0.9%. We further demonstrate the operation of a 4×4 port MMI device with photon pairs, which exhibits complex quantum interference behaviour. We have developed a new technique to fully characterize such multiport devices, which removes the need for phase-sensitive measurements and may find applications for a wide range of photonic devices. Our results show that MMI devices can operate in the quantum regime with high fidelity and promise substantial simplification and concatenation of photonic quantum circuits.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ gujma @ Serial 763
Permanent link to this record
 

 
Author Ikuta, Rikizo; Kusaka, Yoshiaki; Kitano, suyoshi; Kato, Hiroshi; Yamamoto, Takashi; Koashi, Masato; Imoto, Nobuyuki
Title Wide-band quantum interface for visible-totelecommunication wavelength conversion Type Journal Article
Year 2011 Publication Nature Communications Abbreviated Journal (up) Nat. Comm.
Volume 2 Issue Pages 5
Keywords fromIPMRAS
Abstract Although near-infrared photons in telecommunication bands are required for long-distance quantum communication, various quantum information tasks have been performed by using visible photons for the past two decades. Recently, such visible photons from diverse media including atomic quantum memories have also been studied. Optical frequency down-conversion from visible to telecommunication bands while keeping the quantum states is thus required for bridging such wavelength gaps. Here we report demonstration of a quantum interface of frequency down-conversion from visible to telecommunication bands by using a nonlinear crystal, which has a potential to work over wide bandwidths, leading to a high-speed interface of frequency conversion. We achieved the conversion of a picosecond visible photon at 780 nm to a 1,522-nm photon, and observed that the conversion process retained entanglement between the down-converted photon and another photon.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ gujma @ Serial 764
Permanent link to this record
 

 
Author Crespi, Andrea; Ramponi, Roberta; Osellame, Roberto; Sansoni, Linda; Bongioanni, Irene; Sciarrino, Fabio; Vallone, Giuseppe; Mataloni, Paolo
Title Integrated photonic quantum gates for polarization qubits Type Journal Article
Year 2011 Publication Nature Communications Abbreviated Journal (up) Nat. Comm.
Volume 2 Issue 566 Pages 6
Keywords fromIPMRAS
Abstract The ability to manipulate quantum states of light by integrated devices may open new perspectives both for fundamental tests of quantum mechanics and for novel technological applications. However, the technology for handling polarization-encoded qubits, the most commonly adopted approach, is still missing in quantum optical circuits. Here we demonstrate the first integrated photonic controlled-NOT (CNOT) gate for polarization-encoded qubits. This result has been enabled by the integration, based on femtosecond laser waveguide writing, of partially polarizing beam splitters on a glass chip. We characterize the logical truth table of the quantum gate demonstrating its high fidelity to the expected one. In addition, we show the ability of this gate to transform separable states into entangled ones and vice versa. Finally, the full accessibility of our device is exploited to carry out a complete characterization of the CNOT gate through a quantum process tomography.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ gujma @ Serial 765
Permanent link to this record