toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Wu, Ming C. openurl 
  Title Optoelectronic tweezers Type Journal Article
  Year 2011 Publication Nature Photonics Abbreviated Journal Nature Photon  
  Volume 5 Issue 6 Pages (down) 322-324  
  Keywords fromIPMRAS  
  Abstract Using projected light patterns to form virtual electrodes on a photosensitive substrate, optoelectronic tweezers are able to grab and move micro- and nanoscale objects at will, facilitating applications far beyond biology and colloidal science.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ gujma @ Serial 775  
Permanent link to this record
 

 
Author Fazal, Furqan M.; Block, Steven M. openurl 
  Title Optical tweezers study life under tension Type Journal Article
  Year 2011 Publication Nature Photonics Abbreviated Journal Nat. Photon.  
  Volume 5 Issue 6 Pages (down) 318-321  
  Keywords fromIPMRAS  
  Abstract Optical tweezers have become one of the primary weapons in the arsenal of biophysicists, and have revolutionized the new field of single-molecule biophysics. Today's techniques allow high-resolution experiments on biological macromolecules that were mere pipe dreams only a decade ago.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ gujma @ Serial 776  
Permanent link to this record
 

 
Author Mariantoni, Matteo; Wang, H.; Bialczak, Radoslaw C.; Lenander, M.; Lucero, Erik; Neeley, M.; O'Connell, A. D.; Sank, D.; Weides, M.; Wenner, J.; Yamamoto, T.; Yin, Y.; Zhao, J.; Martinis, John M.; Cleland, A. N. openurl 
  Title Photon shell game in three-resonator circuit quantum electrodynamics Type Journal Article
  Year 2011 Publication Nature Physics Abbreviated Journal Nat. Phys.  
  Volume 7 Issue 4 Pages (down) 287-293  
  Keywords fromIPMRAS  
  Abstract The generation and control of quantum states of light constitute fundamental tasks in cavity quantum electrodynamics (QED). The superconducting realization of cavity QED, circuit QED (refs 11, 12, 13, 14), enables on-chip microwave photonics, where superconducting qubits control and measure individual photon states. A long-standing issue in cavity QED is the coherent transfer of photons between two or more resonators. Here, we use circuit QED to implement a three-resonator architecture on a single chip, where the resonators are interconnected by two superconducting phase qubits. We use this circuit to shuffle one- and two-photon Fock states between the three resonators, and demonstrate qubit-mediated vacuum Rabi swaps between two resonators. By shuffling superposition states we are also able to demonstrate the high-fidelity phase coherence of the transfer. Our results illustrate the potential for using multi-resonator circuits as photon quantum registers and for creating multipartite entanglement between delocalized bosonic modes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ gujma @ Serial 838  
Permanent link to this record
 

 
Author Galeazzi, Massimiliano openurl 
  Title Fundamental noise processes in TES devices Type Journal Article
  Year 2011 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.  
  Volume 21 Issue 3 Pages (down) 267-271  
  Keywords TES, Johnson noise, phonon noise, excess noise, flux-flow noise, thermal fluctuation noise  
  Abstract Microcalorimeters and bolometers are noise-limited devices, therefore, a proper understanding of all noise sources is essential to predict and interpret their performance. In this paper, I review the fundamental noise processes contributing to Transition Edge Sensor (TES) microcalorimeters and bolometers and their effect on device performance. In particular, I will start with a simple, monolithic device model, moving to a more complex one involving discrete components, to finally move to today's more realistic, comprehensive model. In addition to the basic noise contribution (equilibrium Johnson noise and phonon noise), TES are significantly affected by extra noise, which is commonly referred to as excess noise. Different fundamental processes have been proposed and investigated to explain the origin of this excess noise, in particular near equilibrium non-linear Johnson noise, flux-flow noise, and internal thermal fluctuation noise. Experimental evidence shows that all three processes are real and contribute, at different levels, to the TES noise, although different processes become important at different regimes. It is therefore time to discard the term “excess noise” and consider these terms part of the “fundamental noise processes” instead.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Recommended by Klapwijk Approved no  
  Call Number Serial 914  
Permanent link to this record
 

 
Author Paiella, Roberto openurl 
  Title Terahertz quantum cascade lasers: Going ultrafast Type Journal Article
  Year 2011 Publication Nature Photonics Abbreviated Journal Nat. Photon.  
  Volume 5 Issue Pages (down) 253–255  
  Keywords fromIPMRAS  
  Abstract A new asynchronous coherent optical sampling method allows for the direct visualization of actively mode-locked quantum cascade laser pulses at terahertz wavelengths.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ gujma @ Serial 774  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: