|   | 
Details
   web
Records
Author Prevedel, Robert; Hamel, Deny R.; Colbeck, Roger; Fisher, Kent; Resch, Kevin J.
Title (up) Experimental investigation of the uncertainty principle in the presence of quantum memory and its application to witnessing entanglement Type Journal Article
Year 2011 Publication Nature Physics Abbreviated Journal Nat. Phys.
Volume 7 Issue 10 Pages 757-761
Keywords fromIPMRAS
Abstract Heisenberg's uncertainty principle provides a fundamental limitation on the ability of an observer holding classical information to predict the outcome when one of two measurements is performed on a quantum system. However, an observer with access to a particle (stored in a quantum memory) which is entangled with the system generally has a reduced uncertainty: indeed, if the particle and system are maximally entangled, the observer can perfectly predict the outcome of whichever measurement is chosen. This effect has recently been quantified in a new entropic uncertainty relation. Here we experimentally investigate this relation, showing its effectiveness as an efficient entanglement witness. We use entangled photon pairs, an optical delay line serving as a simple quantum memory and fast, active feed-forward. Our results quantitatively agree with the new uncertainty relation. Our technique acts as a witness for almost all entangled states in our experiment as we obtain lower uncertainties than would be possible without the entangled particle.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ gujma @ Serial 821
Permanent link to this record
 

 
Author Berlín, Guido; Brassard, Gilles; Bussières, Félix; Godbout, Nicolas; Slater, Joshua A.; Tittel, Wolfgang
Title (up) Experimental loss-tolerant quantum coin flipping Type Journal Article
Year 2011 Publication Nature Communications Abbreviated Journal Nat. Comm.
Volume 2 Issue 561 Pages 7
Keywords fromIPMRAS
Abstract Coin flipping is a cryptographic primitive in which two distrustful parties wish to generate a random bit to choose between two alternatives. This task is impossible to realize when it relies solely on the asynchronous exchange of classical bits: one dishonest player has complete control over the final outcome. It is only when coin flipping is supplemented with quantum communication that this problem can be alleviated, although partial bias remains. Unfortunately, practical systems are subject to loss of quantum data, which allows a cheater to force a bias that is complete or arbitrarily close to complete in all previous protocols and implementations. Here we report on the first experimental demonstration of a quantum coin-flipping protocol for which loss cannot be exploited to cheat better. By eliminating the problem of loss, which is unavoidable in any realistic setting, quantum coin flipping takes a significant step towards real-world applications of quantum communication.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ gujma @ Serial 766
Permanent link to this record
 

 
Author Kawakami, A; Saito, S.; Hyodo, M.
Title (up) Fabrication of nano-antennas for superconducting Infrared detectors Type Journal Article
Year 2011 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal
Volume 21 Issue 3 Pages 632-635
Keywords optical antennas, NbN/MgO/NbN/TiN/Al HEB, dipole antennas, IR, infrared
Abstract To improve the response performance of superconducting infrared detectors, we have developed a fabrication process for nano-antennas. A nano-antenna consists of a dipole antenna, and a superconducting thin film strip placed in the antenna's center. By measuring the transition temperature of the superconducting strips, we confirmed that their superconductivity maintained a good condition after the nano-antenna fabrication process. We also evaluated nano-antenna characteristics using Fourier transform infrared spectroscopy. The evaluated antenna length and width were respectively set at around 2400 nm and 400 nm, and the antennas were placed at intervals of several micrometers around the area of 1 mm2 . In an evaluation of spectral transmission characteristics, clear absorption caused by antenna effects was observed at around 1400 cm-1. High polarization dependencies were also observed.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 761
Permanent link to this record
 

 
Author Galeazzi, Massimiliano
Title (up) Fundamental noise processes in TES devices Type Journal Article
Year 2011 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.
Volume 21 Issue 3 Pages 267-271
Keywords TES, Johnson noise, phonon noise, excess noise, flux-flow noise, thermal fluctuation noise
Abstract Microcalorimeters and bolometers are noise-limited devices, therefore, a proper understanding of all noise sources is essential to predict and interpret their performance. In this paper, I review the fundamental noise processes contributing to Transition Edge Sensor (TES) microcalorimeters and bolometers and their effect on device performance. In particular, I will start with a simple, monolithic device model, moving to a more complex one involving discrete components, to finally move to today's more realistic, comprehensive model. In addition to the basic noise contribution (equilibrium Johnson noise and phonon noise), TES are significantly affected by extra noise, which is commonly referred to as excess noise. Different fundamental processes have been proposed and investigated to explain the origin of this excess noise, in particular near equilibrium non-linear Johnson noise, flux-flow noise, and internal thermal fluctuation noise. Experimental evidence shows that all three processes are real and contribute, at different levels, to the TES noise, although different processes become important at different regimes. It is therefore time to discard the term “excess noise” and consider these terms part of the “fundamental noise processes” instead.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Recommended by Klapwijk Approved no
Call Number Serial 914
Permanent link to this record
 

 
Author Pentin, I. V.; Smirnov, A. V.; Ryabchun, S. A.; Gol’tsman, G. N.; Vaks, V. L.; Pripolzin, S. I.; Paveliev, D. G.
Title (up) Heterodyne source of THz range based on semiconductor superlattice multiplier Type Conference Article
Year 2011 Publication IRMMW-THz Abbreviated Journal IRMMW-THz
Volume Issue Pages 1-2
Keywords NbN HEB mixer, superlattice
Abstract We present the results of our studies of the possibility of developing a heterodyne receiver incorporating a hot-electron bolometer mixer as the detector and a semiconductor superlattice multiplier driven by a reference synthesizer as the local oscillator. We observe that such a local oscillator offers enough power in the terahertz range to pump the HEB into the operating state.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number 6105209 Serial 1384
Permanent link to this record