toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Wu, Ming C. openurl 
  Title (up) Optoelectronic tweezers Type Journal Article
  Year 2011 Publication Nature Photonics Abbreviated Journal Nature Photon  
  Volume 5 Issue 6 Pages 322-324  
  Keywords fromIPMRAS  
  Abstract Using projected light patterns to form virtual electrodes on a photosensitive substrate, optoelectronic tweezers are able to grab and move micro- and nanoscale objects at will, facilitating applications far beyond biology and colloidal science.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ gujma @ Serial 775  
Permanent link to this record
 

 
Author Mariantoni, Matteo; Wang, H.; Bialczak, Radoslaw C.; Lenander, M.; Lucero, Erik; Neeley, M.; O'Connell, A. D.; Sank, D.; Weides, M.; Wenner, J.; Yamamoto, T.; Yin, Y.; Zhao, J.; Martinis, John M.; Cleland, A. N. openurl 
  Title (up) Photon shell game in three-resonator circuit quantum electrodynamics Type Journal Article
  Year 2011 Publication Nature Physics Abbreviated Journal Nat. Phys.  
  Volume 7 Issue 4 Pages 287-293  
  Keywords fromIPMRAS  
  Abstract The generation and control of quantum states of light constitute fundamental tasks in cavity quantum electrodynamics (QED). The superconducting realization of cavity QED, circuit QED (refs 11, 12, 13, 14), enables on-chip microwave photonics, where superconducting qubits control and measure individual photon states. A long-standing issue in cavity QED is the coherent transfer of photons between two or more resonators. Here, we use circuit QED to implement a three-resonator architecture on a single chip, where the resonators are interconnected by two superconducting phase qubits. We use this circuit to shuffle one- and two-photon Fock states between the three resonators, and demonstrate qubit-mediated vacuum Rabi swaps between two resonators. By shuffling superposition states we are also able to demonstrate the high-fidelity phase coherence of the transfer. Our results illustrate the potential for using multi-resonator circuits as photon quantum registers and for creating multipartite entanglement between delocalized bosonic modes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ gujma @ Serial 838  
Permanent link to this record
 

 
Author Huang, Kevin C. Y.; Jun, Young Chul; Seo, Min-Kyo; Brongersma, Mark L. openurl 
  Title (up) Power flow from a dipole emitter near an optical antenna Type Journal Article
  Year 2011 Publication Optics Express Abbreviated Journal Opt. Express  
  Volume 19 Issue 20 Pages 19084-19092  
  Keywords optical antennas  
  Abstract Current methods to calculate the emission enhancement of a quantum emitter coupled to an optical antenna of arbitrary geometry rely on analyzing the total Poynting vector power flow out of the emitter or the dyadic Green functions from full-field numerical simulations. Unfortunately, these methods do not provide information regarding the nature of the dominant energy decay pathways. We present a new approach that allows for a rigorous separation, quantification, and visualization of the emitter output power flow captured by an antenna and the subsequent reradiation power flow to the far field. Such analysis reveals unprecedented details of the emitter/antenna coupling mechanisms and thus opens up new design strategies for strongly interacting emitter/antenna systems used in sensing, active plasmonics and metamaterials, and quantum optics.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ gujma @ Serial 743  
Permanent link to this record
 

 
Author Grinolds, M. S.; Maletinsky, P.; Hong, S.; Lukin, M. D.; Walsworth, R. L.; Yacoby, A. openurl 
  Title (up) Quantum control of proximal spins using nanoscale magnetic resonance imaging Type Journal Article
  Year 2011 Publication Nature Physics Abbreviated Journal Nat. Phys.  
  Volume 7 Issue 9 Pages 687-692  
  Keywords fromIPMRAS  
  Abstract Quantum control of individual spins in condensed-matter systems is an emerging field with wide-ranging applications in spintronics, quantum computation and sensitive magnetometry. Recent experiments have demonstrated the ability to address and manipulate single electron spins through either optical or electrical techniques. However, it is a challenge to extend individual-spin control to nanometre-scale multi-electron systems, as individual spins are often irresolvable with existing methods. Here we demonstrate that coherent individual-spin control can be achieved with few- nanometre resolution for proximal electron spins by carrying out single-spin magnetic resonance imaging (MRI), which is realized using a scanning-magnetic-field gradient that is both strong enough to achieve nanometre spatial resolution and sufficiently stable for coherent spin manipulations. We apply this scanning-field-gradient MRI technique to electronic spins in nitrogen-vacancy (NV) centres in diamond and achieve nanometre resolution in imaging, characterization and manipulation of individual spins. For NV centres, our results in individual-spin control demonstrate an improvement of nearly two orders of magnitude in spatial resolution when compared with conventional optical diffraction-limited techniques. This scanning-field-gradient microscope enables a wide range of applications including materials characterization, spin entanglement and nanoscale magnetometry.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ gujma @ Serial 827  
Permanent link to this record
 

 
Author Mitin, Vladimir; Antipov, Andrei; Sergeev, Andrei; Vagidov, Nizami; Eason, David; Strasser, Gottfried openurl 
  Title (up) Quantum Dot Infrared Photodetectors: Photoresponse Enhancement Due to Potential Barriers Type Journal Article
  Year 2011 Publication Nanoscale Research Letters Abbreviated Journal Nanoscale res lett  
  Volume 6 Issue 1 Pages 6  
  Keywords Quantum dots; Infrared detectors; Photoresponse; Doping; Potential barriers; Capture processes  
  Abstract Potential barriers around quantum dots (QDs) play a key role in kinetics of photoelectrons. These barriers are always created, when electrons from dopants outside QDs fill the dots. Potential barriers suppress the capture processes of photoelectrons and increase the photoresponse. To directly investigate the effect of potential barriers on photoelectron kinetics, we fabricated several QD structures with different positions of dopants and various levels of doping. The potential barriers as a function of doping and dopant positions have been determined using nextnano3 software. We experimentally investigated the photoresponse to IR radiation as a function of the radiation frequency and voltage bias. We also measured the dark current in these QD structures. Our investigations show that the photoresponse increases ~30 times as the height of potential barriers changes from 30 to 130 meV.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ gujma @ Serial 712  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: