|   | 
Details
   web
Records
Author
Title ГОСТ 3.1102-2011. ЕСТД. Стадии разработки и виды документов. Общие положения Type (up) Book Whole
Year 2011 Publication Abbreviated Journal
Volume Issue Pages
Keywords gost, detproj
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 864
Permanent link to this record
 

 
Author Feresten, Nancy Laties; Thornton, Jennifer A.; Emmett, Jennifer; Lamichhane, Priyanka; Epstein, Lori; Kiesow, Annette; Olesin, Kate; Hill, Grace (eds)
Title Everything: Rocks and Minerals Type (up) Book Whole
Year 2011 Publication Nat. Geogr. Partners Abbreviated Journal
Volume Issue Pages 1-64
Keywords children
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor Feresten, Nancy Laties; Thornton, Jennifer A.; Emmett, Jennifer; Lamichhane, Priyanka; Epstein, Lori; Kiesow, Annette; Olesin, Kate; Hill, Grace
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1146
Permanent link to this record
 

 
Author Korneev, Alexander; Korneeva, Yulia; Florya, Irina; Elezov, Michael; Manova, Nadezhda; Tarkhov, Michael; An, Pavel; Kardakova, Anna; Isupova, Anastasiya; Chulkova, Galina; Voronov, Boris
Title Recent advances in superconducting NbN single-photon detector development Type (up) Conference Article
Year 2011 Publication Proc. SPIE Abbreviated Journal Proc. SPIE
Volume 8072 Issue Pages 807202 (1 to 10)
Keywords SSPD
Abstract Superconducting single-photon detector (SSPD) is a planar nanostructure patterned from 4-nm-thick NbN film deposited on sapphire substrate. The sensitive element of the SSPD is 100-nm-wide NbN strip. The device is operated at liquid helium temperature. Absorption of a photon leads to a local suppression of superconductivity producing subnanosecond-long voltage pulse. In infrared (at 1550 nm and longer wavelengths) SSPD outperforms avalanche photodiodes in terms of detection efficiency (DE), dark counts rate, maximum counting rate and timing jitter. Efficient single-mode fibre coupling of the SSPD enabled its usage in many applications ranging from single-photon sources research to quantum cryptography. Recently we managed to improve the SSPD performance and measured 25% detection efficiency at 1550 nm wavelength and dark counts rate of 10 s-1. We also improved photon-number resolving SSPD (PNR-SSPD) which realizes a spatial multiplexing of incident photons enabling resolving of up to 4 simultaneously absorbed photons. Another improvement is the increase of the photon absorption using a λ/4 microcavity integrated with the SSPD. And finally in our strive to increase the DE at longer wavelengths we fabricated SSPD with the strip almost twice narrower compared to the standard 100 nm and demonstrated that in middle infrared (about 3 μm wavelength) these devices have DE several times higher compared to the traditional SSPDs.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ gujma @ Serial 663
Permanent link to this record
 

 
Author Sprengers, J.P.; Gaggero, A.; Sahin, D.; Nejad, S. Jahanmiri; Mattioli, F.; Leoni, R.; Beetz, J.; Lermer, M.; Kamp, M.; Höfling, S.; Sanjines, R.; Fiore A.
Title Waveguide single-photon detectors for integrated quantum photonic circuits Type (up) Conference Article
Year 2011 Publication arXiv Abbreviated Journal arXiv
Volume 1108.5107 Issue Pages 1-11
Keywords optical waveguides, waveguide SSPD
Abstract The generation, manipulation and detection of quantum bits (qubits) encoded on single photons is at the heart of quantum communication and optical quantum information processing. The combination of single-photon sources, passive optical circuits and single-photon detectors enables quantum repeaters and qubit amplifiers, and also forms the basis of all-optical quantum gates and of linear-optics quantum computing. However, the monolithic integration of sources, waveguides and detectors on the same chip, as needed for scaling to meaningful number of qubits, is very challenging, and previous work on quantum photonic circuits has used external sources and detectors. Here we propose an approach to a fully-integrated quantum photonic circuit on a semiconductor chip, and demonstrate a key component of such circuit, a waveguide single-photon detector. Our detectors, based on superconducting nanowires on GaAs ridge waveguides, provide high efficiency (20%) at telecom wavelengths, high timing accuracy (60 ps), response time in the ns range, and are fully compatible with the integration of single-photon sources, passive networks and modulators.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 846
Permanent link to this record
 

 
Author Belitsky, V.; Desmaris, V.; Dochev, D.; Meledin, D.; Pavolotsky, A.
Title Towards Multi-Pixel Heterodyne Terahertz Receivers Type (up) Conference Article
Year 2011 Publication Proc. 22th Int. Symp. Space Terahertz Technol. Abbreviated Journal
Volume Issue Pages
Keywords
Abstract Terahertz multi-pixel heterodyne receivers introduce multiple challenges for their implementation, mostly due to the extremely small dimensions of all components and even smaller tolerances in terms of alignment, linear dimensions and waveguide component surface quality. In this manuscript, we present a concept of terahertz multi-pixel heterodyne receiver employing optical layout using polarization split between the LO and RF. The frontend isbased on a waveguide balanced HEB mixer for the frequency band 1.6 – 2.0 THz. The balanced HEB mixer followsthe layout of earlier demonstrated APEX T2 mixer. However for the mixer presented here, we implemented split-block layout offering inimized lengths of all waveguides and thus reducing the associated RF loss. The micromachining methods employed for producing the mixer housing and the HEB mixer chip are very suitable for producing multiple structures and hence are in-line with requirements of multi-pixel receiver technology. The demonstrated relatively simple mounting of the mixer chip with self-aligning should greatly facilitate the integration of such multi-channel receiver. Index Terms—Instrumentation, Multi-pixel, Terahertz, Waveguide Balanced Mixer.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ atomics90 @ Serial 975
Permanent link to this record