toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (up) Smith, Devin H.; Gillett, Geoff; de Almeida, Marcelo P.; Branciard, Cyril; Fedrizzi, Alessandro; Weinhold, Till J.; Lita, Adriana; Calkins, Brice; Gerrits, Thomas; Wiseman, Howard M.; Nam, Sae Woo; White, Andrew G. openurl 
  Title Conclusive quantum steering with superconducting transition-edge sensors Type Journal Article
  Year 2012 Publication Nature Communications Abbreviated Journal Nat. Comm.  
  Volume 3 Issue 625 Pages 6  
  Keywords fromIPMRAS  
  Abstract Quantum steering allows two parties to verify shared entanglement even if one measurement device is untrusted. A conclusive demonstration of steering through the violation of a steering inequality is of considerable fundamental interest and opens up applications in quantum communication. To date, all experimental tests with single-photon states have relied on post selection, allowing untrusted devices to cheat by hiding unfavourable events in losses. Here we close this 'detection loophole' by combining a highly efficient source of entangled photon pairs with superconducting transition-edge sensors. We achieve an unprecedented ~62% conditional detection efficiency of entangled photons and violate a steering inequality with the minimal number of measurement settings by 48 s.d.s. Our results provide a clear path to practical applications of steering and to a photonic loophole-free Bell test.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ gujma @ Serial 768  
Permanent link to this record
 

 
Author (up) Steudle, Gesine A.; Schietinger, Stefan; Höckel, David; Dorenbos, Sander N.; Zadeh, Iman E.; Zwiller, Valery; Benson, Oliver doi  openurl
  Title Measuring the quantum nature of light with a single source and a single detector Type Journal Article
  Year 2012 Publication Phys. Rev. A Abbreviated Journal  
  Volume 86 Issue 5 Pages 053814  
  Keywords SSPD, SNSPD, saturation count rates, dead time, dynamic range  
  Abstract An elementary experiment in optics consists of a light source and a detector. Yet, if the source generates nonclassical correlations such an experiment is capable of unambiguously demonstrating the quantum nature of light. We realized such an experiment with a defect center in diamond and a superconducting detector. Previous experiments relied on more complex setups, such as the Hanbury Brown and Twiss configuration, where a beam splitter directs light to two photodetectors, creating the false impression that the beam splitter is a fundamentally required element. As an additional benefit, our results provide a simplification of the widely used photon-correlation techniques.  
  Address  
  Corporate Author Thesis  
  Publisher American Physical Society Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1089  
Permanent link to this record
 

 
Author (up) Swetz, D. S.; Bennett, D. A.; Irwin, K. D.; Schmidt, D. R.; Ullom, J. N. doi  openurl
  Title Current distribution and transition width in superconducting transition-edge sensors Type Journal Article
  Year 2012 Publication Appl. Phys. Lett. Abbreviated Journal Appl. Phys. Lett.  
  Volume 101 Issue Pages 242603  
  Keywords  
  Abstract Present models of the superconducting-to-normal transition in transition-edge sensors (TESs) do not describe the current distribution within a biased TES. This distribution is complicated by normal-metal features that are integral to TES design. We present a model with one free parameter that describes the evolution of the current distribution with bias. To probe the current distribution experimentally, we fabricated TES devices with different current return geometries. Devices where the current return geometry mirrors current flow within the device have sharper transitions, thus allowing for a direct test of the current-flow model.Measurements from these devices show that current meanders through a TES low in the resistivetransition but flows across the normal-metal features by 40% of the normal-state resistance. Comparison of transition sharpness between device designs reveals that self-induced magnetic fields play an important role in determining the width of the superconducting transition.  
  Address TES, current distribution  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Recommended by Klapwijk Approved no  
  Call Number Serial 930  
Permanent link to this record
 

 
Author (up) Tassin, Philippe; Koschny, Thomas; Kafesaki, Maria; Soukoulis, Costas M. openurl 
  Title A comparison of graphene, superconductors and metals as conductors for metamaterials and plasmonics Type Journal Article
  Year 2012 Publication Nature Photonics Abbreviated Journal Nat. Photon.  
  Volume 6 Issue 4 Pages 259-264  
  Keywords fromIPMRAS  
  Abstract Recent advancements in metamaterials and plasmonics have promised a number of exciting applications, in particular at terahertz and optical frequencies. Unfortunately, the noble metals used in these photonic structures are not particularly good conductors at high frequencies, resulting in significant dissipative loss. Here, we address the question of what is a good conductor for metamaterials and plasmonics. For resonant metamaterials, we develop a figure-of-merit for conductors that allows for a straightforward classification of conducting materials according to the resulting dissipative loss in the metamaterial. Application of our method predicts that graphene and high-Tc superconductors are not viable alternatives for metals in metamaterials. We also provide an overview of a number of transition metals, alkali metals and transparent conducting oxides. For plasmonic systems, we predict that graphene and high-Tc superconductors cannot outperform gold as a platform for surface plasmon polaritons, because graphene has a smaller propagation length-to-wavelength ratio.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ gujma @ Serial 790  
Permanent link to this record
 

 
Author (up) Tuchak, A. N.; Gol’tsman, G. N.; Kitaeva, G. K.; Penin, A. N.; Seliverstov, S. V.; Finkel, M. I.; Shepelev, A. V.; Yakunin, P. V. url  doi
openurl 
  Title Generation of nanosecond terahertz pulses by the optical rectification method Type Journal Article
  Year 2012 Publication JETP Lett. Abbreviated Journal JETP Lett.  
  Volume 96 Issue 2 Pages 94-97  
  Keywords optical rectification, lithium niobate crystal  
  Abstract The possibility of the generation of quasi-cw terahertz radiation by the optical rectification method for broad-band Fourier unlimited nanosecond laser pulses has been experimentally demonstrated. The broadband radiation of a LiF dye-center laser is used as a pump source of a nonlinear optical oscillator. The energy efficiency of terahertz optical frequency conversion in a periodically polarized lithium niobate crystal is 4 × 10−9 at a pump power density of 7 MW/cm2.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-3640 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1377  
Permanent link to this record
 

 
Author (up) Ulhaq, A.; Weiler, S.; Ulrich, S. M.; Roßbach, R.; Jetter, M.; Michler, P. openurl 
  Title Cascaded single-photon emission from the Mollow triplet sidebands of a quantum dot Type Journal Article
  Year 2012 Publication Nature Photonics Abbreviated Journal Nat. Photon.  
  Volume 6 Issue 4 Pages 238-242  
  Keywords fromIPMRAS  
  Abstract Emission from a resonantly excited quantum emitter is a fascinating research topic within the field of quantum optics and is a useful source for different types of quantum light fields. The resonance spectrum consists of a single spectral line that develops into a triplet above saturation of the quantum emitter. The three closely spaced photon channels from the resonance fluorescence have different photon statistical signatures. We present a detailed photon statistics analysis of the resonance fluorescence emission triplet from a solid-state-based artificial atom, that is, a semiconductor quantum dot. The photon correlation measurements demonstrate both `single' and `cascaded' photon emission from the Mollow triplet sidebands. The bright and narrow sideband emission (5.9 × 106 photons per second into the first lens) can be conveniently frequency-tuned by laser detuning over 15 times its linewidth (Δv ~ 1.0 GHz). These unique properties make the Mollow triplet sideband emission a valuable light source for quantum light spectroscopy and quantum information applications, for example.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ gujma @ Serial 788  
Permanent link to this record
 

 
Author (up) Usmani, Imam; Clausen, Christoph; Bussières, Félix; Sangouard, Nicolas; Afzelius, Mikael; Gisin, Nicolas openurl 
  Title Heralded quantum entanglement between two crystals Type Journal Article
  Year 2012 Publication Nature Photonics Abbreviated Journal Nat. Photon.  
  Volume 6 Issue 4 Pages 234-237  
  Keywords fromIPMRAS  
  Abstract Quantum networks must have the crucial ability to entangle quantum nodes. A prominent example is the quantum repeater, which allows the distance barrier of direct transmission of single photons to be overcome, provided remote quantum memories can be entangled in a heralded fashion. Here, we report the observation of heralded entanglement between two ensembles of rare-earth ions doped into separate crystals. A heralded single photon is sent through a 50/50 beamsplitter, creating a single-photon entangled state delocalized between two spatial modes. The quantum state of each mode is subsequently mapped onto a crystal, leading to an entangled state consisting of a single collective excitation delocalized between two crystals. This entanglement is revealed by mapping it back to optical modes and by estimating the concurrence of the retrieved light state. Our results highlight the potential of crystals doped with rare-earth ions for entangled quantum nodes and bring quantum networks based on solid-state resources one step closer.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ gujma @ Serial 793  
Permanent link to this record
 

 
Author (up) Vercruyssen, N.; Verhagen, T. G. A.; Flokstra, M. G.; Pekola, J. P.; Klapwijk, T. M. openurl 
  Title Evanescent states and nonequilibrium in driven superconducting nanowires Type Journal Article
  Year 2012 Publication Phys. Rev. B Abbreviated Journal Phys. Rev. B  
  Volume 85 Issue Pages 224503(1-10)  
  Keywords Al HEB, Al superconducting nanowire, global state, bimodal state, quasiclassical kinetic equations, Usadel equation  
  Abstract We study the nonlinear response of current transport in a superconducting diffusive nanowire between normal reservoirs. We demonstrate theoretically and experimentally the existence of two different superconducting states appearing when the wire is driven out of equilibrium by an applied bias, called the global and bimodal superconducting states. The different states are identified by using two-probe measurements of the wire, and measurements of the local density of states with tunneling probes. The analysis is performed within the framework of the quasiclassical kinetic equations for diffusive superconductors.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 898  
Permanent link to this record
 

 
Author (up) Xu, XinAn; Wong, Chee Wei openurl 
  Title Quantum optics: Correlations on a chip Type Journal Article
  Year 2012 Publication Nature Photonics Abbreviated Journal Nat. Photon.  
  Volume 6 Issue Pages 75-76  
  Keywords fromIPMRAS  
  Abstract Researchers have developed a semiconductor structure capable of supporting quantum correlations between photons and strong single-photon nonlinearities, thus paving the way for the development of chip-based devices for quantum secure communications and quantum information processing.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ gujma @ Serial 782  
Permanent link to this record
 

 
Author (up) Yao, Xing-Can; Wang, Tian-Xiong; Xu, Ping; Lu, He; Pan, Ge-Sheng; Bao, Xiao-Hui; Peng, Cheng-Zhi; Lu, Chao-Yang; Chen, Yu-Ao; Pan, Jian-Wei openurl 
  Title Observation of eight-photon entanglement Type Journal Article
  Year 2012 Publication Nature Photonics Abbreviated Journal Nat. Photon.  
  Volume 6 Issue 4 Pages 225-228  
  Keywords fromIPMRAS  
  Abstract The creation of increasingly large multipartite entangled states is not only a fundamental scientific endeavour in itself, but is also the enabling technology for quantum information. Tremendous experimental effort has been devoted to generating multiparticle entanglement with a growing number of qubits. So far, up to six spatially separated single photons have been entangled based on parametric downconversion. Multiple degrees of freedom of a single photon have been exploited to generate forms of hyper-entangled states. Here, using new ultra-bright sources of entangled photon pairs, an eight-photon interferometer and post-selection detection, we demonstrate for the first time the creation of an eight-photon Schrödinger cat state with genuine multipartite entanglement. The ability to control eight individual photons represents a step towards optical quantum computation, and will enable new experiments on, for example, quantum simulation, topological error correction and testing entanglement dynamics under decoherence.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ gujma @ Serial 784  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: