|   | 
Details
   web
Records
Author Akalin, Tahsin
Title Terahertz sources: Powerful photomixers Type Journal Article
Year 2012 Publication Nature Photonics Abbreviated Journal Nat. Photon.
Volume 6 Issue (up) 2 Pages 81
Keywords fromIPMRAS
Abstract An efficient continuous-wave source of terahertz radiation that combines the outputs from two near-infrared semiconductor lasers in a novel photomixer looks set to benefit applications in spectroscopy and imaging.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ gujma @ Serial 787
Permanent link to this record
 

 
Author Hollenberg, Lloyd C. L.
Title Quantum control: Through the quantum chicane Type Journal Article
Year 2012 Publication Nature Physics Abbreviated Journal Nat. Phys.
Volume 8 Issue (up) 2 Pages 113-114
Keywords fromIPMRAS
Abstract In quantum control there is an inherent tension between high fidelity requirements and the need for speed to avoid decoherence. A direct comparison of quantum control protocols at these two extremes indicates where the sweet spot may lie.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ gujma @ Serial 812
Permanent link to this record
 

 
Author Korotkov, Alexander N.
Title Entanglement preservation: The Sleeping Beauty approach Type Journal Article
Year 2012 Publication Nature Physics Abbreviated Journal Nat. Phys.
Volume 8 Issue (up) 2 Pages 107-108
Keywords fromIPMRAS
Abstract Two-qubit entanglement can be preserved by partially measuring the qubits to leave them in a 'lethargic' state. The original state is restored using quantum measurement reversal after the qubits have travelled through a decoherence channel.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ gujma @ Serial 814
Permanent link to this record
 

 
Author Kim, Yong-Su; Lee, Jong-Chan; Kwon, Osung; Kim, Yoon-Ho
Title Protecting entanglement from decoherence using weak measurement and quantum measurement reversal Type Journal Article
Year 2012 Publication Nature Physics Abbreviated Journal Nat. Phys.
Volume 8 Issue (up) 2 Pages 117-120
Keywords fromIPMRAS
Abstract Decoherence, often caused by unavoidable coupling with the environment, leads to degradation of quantum coherence. For a multipartite quantum system, decoherence leads to degradation of entanglement and, in certain cases, entanglement sudden death. Tackling decoherence, thus, is a critical issue faced in quantum information, as entanglement is a vital resource for many quantum information applications including quantum computing, quantum cryptography, quantum teleportation and quantum metrology. Here, we propose and demonstrate a scheme to protect entanglement from decoherence. Our entanglement protection scheme makes use of the quantum measurement itself for actively battling against decoherence and it can effectively circumvent even entanglement sudden death.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ gujma @ Serial 815
Permanent link to this record
 

 
Author Bason, Mark G.; Viteau, Matthieu; Malossi, Nicola; Huillery, Paul; Arimondo, Ennio; Ciampini, Donatella; Fazio, Rosario; Giovannetti, Vittorio; Mannella, Riccardo; Morsch, Oliver
Title High-fidelity quantum driving Type Journal Article
Year 2012 Publication Nature Physics Abbreviated Journal Nat. Phys.
Volume 8 Issue (up) 2 Pages 147-152
Keywords fromIPMRAS
Abstract Accurately controlling a quantum system is a fundamental requirement in quantum information processing and the coherent manipulation of molecular systems. The ultimate goal in quantum control is to prepare a desired state with the highest fidelity allowed by the available resources and the experimental constraints. Here we experimentally implement two optimal high-fidelity control protocols using a two-level quantum system comprising Bose-Einstein condensates in optical lattices. The first is a short-cut protocol that reaches the maximum quantum-transformation speed compatible with the Heisenberg uncertainty principle. In the opposite limit, we realize the recently proposed transitionless superadiabatic protocols in which the system follows the instantaneous adiabatic ground state nearly perfectly. We demonstrate that superadiabatic protocols are extremely robust against control parameter variations, making them useful for practical applications.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ gujma @ Serial 816
Permanent link to this record