|   | 
Details
   web
Records
Author Shurakov, A.; Seliverstov, S.; Kaurova, N.; Finkel, M.; Voronov, B.; Goltsman, G.
Title Input bandwidth of hot electron bolometer with spiral antenna Type Journal Article
Year 2012 Publication IEEE Trans. THz Sci. Technol. Abbreviated Journal IEEE Trans. THz Sci. Technol.
Volume 2 Issue 4 Pages 400-405
Keywords NbN HEB bolometers bandwidth, log-spiral antenna
Abstract We report the results of our study of the input bandwidth of hot electron bolometers (HEB) embedded into the planar log-spiral antenna. The sensitive element is made of the ultrathin superconducting NbN film patterned as a bridge at the feed of the antenna. The contacts between the antenna and a sensitive element are made from in situ deposited gold (i.e., deposited over NbN film without breaking vacuum), which gives high quality contacts and makes the response of the HEB at higher frequencies less affected by the RF loss. An accurate experimental spectroscopic procedure is demonstrated that leads to the confirmation of the wide ( 8 THz) bandwidth in this antenna coupled device.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2156-342X ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial (up) 1161
Permanent link to this record
 

 
Author Minaeva, O.; Fraine, A.; Korneev, A.; Divochiy, A.; Goltsman, G.; Sergienko, A.
Title High resolution optical time-domain reflectometry using superconducting single-photon detectors Type Conference Article
Year 2012 Publication Frontiers in Opt. 2012/Laser Sci. XXVIII Abbreviated Journal Frontiers in Opt. 2012/Laser Sci. XXVIII
Volume Issue Pages Fw3a.39
Keywords SSPD, SNSPD, Photodetectors; Fiber characterization; Light beams; Optical time domain reflectometry; Photon counting; Single mode fibers; Single photon detectors; Superconductors
Abstract We discuss the advantages and limitations of single-photon optical time-domain reflectometry with superconducting single-photon detectors. The higher two-point resolution can be achieved due to superior timing performance of SSPDs in comparison with InGaAs APDs.
Address
Corporate Author Thesis
Publisher Optical Society of America Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial (up) 1237
Permanent link to this record
 

 
Author Pernice, W. H. P.; Schuck, C.; Minaeva, O.; Li, M.; Goltsman, G. N.; Sergienko, A. V.; Tang, H. X.
Title High-speed and high-efficiency travelling wave single-photon detectors embedded in nanophotonic circuits Type Journal Article
Year 2012 Publication Nat. Commun. Abbreviated Journal Nat. Commun.
Volume 3 Issue Pages 1325 (1 to 10)
Keywords waveguide SSPD
Abstract Ultrafast, high-efficiency single-photon detectors are among the most sought-after elements in modern quantum optics and quantum communication. However, imperfect modal matching and finite photon absorption rates have usually limited their maximum attainable detection efficiency. Here we demonstrate superconducting nanowire detectors atop nanophotonic waveguides, which enable a drastic increase of the absorption length for incoming photons. This allows us to achieve high on-chip single-photon detection efficiency up to 91% at telecom wavelengths, repeatable across several fabricated chips. We also observe remarkably low dark count rates without significant compromise of the on-chip detection efficiency. The detectors are fully embedded in scalable silicon photonic circuits and provide ultrashort timing jitter of 18 ps. Exploiting this high temporal resolution, we demonstrate ballistic photon transport in silicon ring resonators. Our direct implementation of a high-performance single-photon detector on chip overcomes a major barrier in integrated quantum photonics.
Address Department of Electrical Engineering, Yale University, New Haven, Connecticut 06511, USA
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2041-1723 ISBN Medium
Area Expedition Conference
Notes PMID:23271658; PMCID:PMC3535416 Approved no
Call Number Serial (up) 1375
Permanent link to this record
 

 
Author Tuchak, A. N.; Gol’tsman, G. N.; Kitaeva, G. K.; Penin, A. N.; Seliverstov, S. V.; Finkel, M. I.; Shepelev, A. V.; Yakunin, P. V.
Title Generation of nanosecond terahertz pulses by the optical rectification method Type Journal Article
Year 2012 Publication JETP Lett. Abbreviated Journal JETP Lett.
Volume 96 Issue 2 Pages 94-97
Keywords optical rectification, lithium niobate crystal
Abstract The possibility of the generation of quasi-cw terahertz radiation by the optical rectification method for broad-band Fourier unlimited nanosecond laser pulses has been experimentally demonstrated. The broadband radiation of a LiF dye-center laser is used as a pump source of a nonlinear optical oscillator. The energy efficiency of terahertz optical frequency conversion in a periodically polarized lithium niobate crystal is 4 × 10−9 at a pump power density of 7 MW/cm2.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-3640 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial (up) 1377
Permanent link to this record
 

 
Author Pentin, I. V.; Smirnov, A. V.; Ryabchun, S. A.; Ozhegov, R. V.; Gol’tsman, G. N.; Vaks, V. L.; Pripolzin, S. I.; Pavel’ev, D. G.; Koshurinov, Y. I.; Ivanov, A. S.
Title Semiconducting superlattice as a solid-state terahertz local oscillator for NbN hot-electron bolometer mixers Type Journal Article
Year 2012 Publication Tech. Phys. Abbreviated Journal Tech. Phys.
Volume 57 Issue 7 Pages 971-974
Keywords semiconducting superlattice frequency multiplier, NbN HEB mixers
Abstract We present the results of our studies of the semiconducting superlattice (SSL) frequency multiplier and its application as part of the solid state local oscillator (LO) in the terahertz heterodyne receiver based on a NbN hot-electron bolometer (HEB) mixer. We show that the SSL output power level increases as the ambient temperature is lowered to 4.2 K, the standard HEB operation temperature.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1063-7842 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial (up) 1378
Permanent link to this record