|   | 
Details
   web
Records
Author Tassin, Philippe; Koschny, Thomas; Kafesaki, Maria; Soukoulis, Costas M.
Title (up) A comparison of graphene, superconductors and metals as conductors for metamaterials and plasmonics Type Journal Article
Year 2012 Publication Nature Photonics Abbreviated Journal Nat. Photon.
Volume 6 Issue 4 Pages 259-264
Keywords fromIPMRAS
Abstract Recent advancements in metamaterials and plasmonics have promised a number of exciting applications, in particular at terahertz and optical frequencies. Unfortunately, the noble metals used in these photonic structures are not particularly good conductors at high frequencies, resulting in significant dissipative loss. Here, we address the question of what is a good conductor for metamaterials and plasmonics. For resonant metamaterials, we develop a figure-of-merit for conductors that allows for a straightforward classification of conducting materials according to the resulting dissipative loss in the metamaterial. Application of our method predicts that graphene and high-Tc superconductors are not viable alternatives for metals in metamaterials. We also provide an overview of a number of transition metals, alkali metals and transparent conducting oxides. For plasmonic systems, we predict that graphene and high-Tc superconductors cannot outperform gold as a platform for surface plasmon polaritons, because graphene has a smaller propagation length-to-wavelength ratio.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ gujma @ Serial 790
Permanent link to this record
 

 
Author Rasulova, G. K.; Brunkov, P. N.; Pentin, I. V.; Egorov, A. Y.; Knyazev, D. A.; Andrianov, A. V.; Zakhar’in, A. O.; Konnikov, S. G.; Gol’tsman, G. N.
Title (up) A weakly coupled semiconductor superlattice as a potential for a radio frequency modulated terahertz light emitter Type Journal Article
Year 2012 Publication Appl. Phys. Lett. Abbreviated Journal Appl. Phys. Lett.
Volume 100 Issue 13 Pages 131104 (1 to 4)
Keywords semiconductor superlattice
Abstract The bolometer response to THz radiation from a weakly coupled GaAs/AlGaAs superlattice biased in the self-oscillations regime has been observed. The bolometer signal is modulated with the frequency equal to the fundamental frequency of superlattice self-oscillations. The frequency spectrum of the bolometer signal contains higher harmonics whose frequency is a multiple of fundamental frequency of self-oscillations.

This work was supported by State Contracts Nos. 16.740.11.0044 and 16.552.11.7002 of Ministry of Education and Science of the Russian Federation. Structural characterization was made on the equipment of the Joint Research Centre «Material science and characterization in advanced technology» (Ioffe Institute, St. Petersburg, Russia).
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1379
Permanent link to this record
 

 
Author Inderbitzin, K.; Engel, A.; Schilling, A.; Il'in, K.; Siegel, M.
Title (up) An ultra-fast superconducting Nb nanowire single-photon detector for soft x-rays Type Journal Article
Year 2012 Publication Abbreviated Journal Appl. Phys. Lett.
Volume 101 Issue Pages
Keywords SSPD, SNSPD, x-ray, Nb
Abstract Although superconducting nanowire single-photon detectors (SNSPDs) are well studied regarding the

detection of infrared/optical photons and keV-molecules, no studies on continuous x-ray photon

counting by thick-film detectors have been reported so far. We fabricated a 100 nm thick niobium

x-ray SNSPD (an X-SNSPD) and studied its detection capability of photons with keV-energies in

continuous mode. The detector is capable to detect photons even at reduced bias currents of 0.4%,

which is in sharp contrast to optical thin-film SNSPDs. No dark counts were recorded in extended

measurement periods. Strikingly, the signal amplitude distribution depends significantly on the photon

energy spectrum.VC
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ seleznev @ Serial 878
Permanent link to this record
 

 
Author Goulielmakis, Eleftherios
Title (up) Attosecond photonics: Extreme ultraviolet catastrophes Type Journal Article
Year 2012 Publication Nature Photonics Abbreviated Journal Nat. Photon.
Volume 6 Issue 3 Pages 142-143
Keywords fromIPMRAS
Abstract Extreme ultraviolet attosecond pulses, which emerge from the interaction of atoms with intense laser fields, play a central role in modern ultrafast science and the exploration of electron behaviour. Recent work now shows that catastrophe theory can help optimize the properties of these pulses.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ gujma @ Serial 791
Permanent link to this record
 

 
Author Henrich, D.; Dorner,S.; Hofherr, M.; Il'in, K.; Semenov, A.; Heintze, E.; Scheffler, M.; Dressel, M.; Siegel, M.
Title (up) Broadening of hot-spot response spectrum of superconducting NbN nanowire single-photon detector with reduced nitrogen content Type Journal Article
Year 2012 Publication Abbreviated Journal J. Appl. Phys.
Volume 112 Issue Pages
Keywords SSPD, SNSPD, magnetron sputtering, spectrum, NbN film, nitrogen concentration
Abstract The spectral detection efficiency and the dark count rate of superconducting nanowire

single-photon detectors (SNSPD) have been studied systematically on detectors made from thin

NbN films with different chemical compositions. Reduction of the nitrogen content in the 4 nm

thick NbN films results in a decrease of the dark count rates more than two orders of magnitude

and in a red shift of the cut-off wavelength of the hot-spot SNSPD response. The observed

phenomena are explained by an improvement of uniformity of NbN films that has been confirmed

by a decrease of resistivity and an increase of the ratio of the measured critical current to the

depairing current. The latter factor is considered as the most crucial for both the cut-off

wavelength and the dark count rates of SNSPD. Based on our results we propose a set of criteria

for material properties to optimize SNSPD in the infrared spectral region. VC 2012 American

Institute of Physics. [http://dx.doi.org/10.1063/1.4757625]
Address
Corporate Author D. Henrich, S. Dorner, M. Hofherr, K. Il'in, A. Semenov, E. Heintze, M. Scheffler, M. Dressel, M. Siegel Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title Broadening of hot-spot response spectrum of superconducting NbN nanowire single-photon detector with reduced nitrogen content
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ seleznev @ Serial 877
Permanent link to this record