toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Zhang, W.; Miao, W.; Zhong, J. Q.; Shi, S. C.; Hayton, D. J.; Vercruyssen, N.; Gao, J. R.; Goltsman, G. N. openurl 
  Title Temperature dependence of superconducting hot electron bolometers Type Conference Article
  Year 2013 Publication Not published results: 24th international symposium on space terahertz technology Abbreviated Journal  
  Volume Issue Pages  
  Keywords HEB  
  Abstract (up)  
  Address Groningen,The Netherlands  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1067  
Permanent link to this record
 

 
Author Cavalié, T.; Feuchtgruber, H.; Lellouch, E.; de Val-Borro, M.; Jarchow, C.; Moreno, R.; Hartogh, P.; Orton, G.; Greathouse, T. K.; Billebaud, F.; Dobrijevic, M.; Lara, L. M.; González, A.; Sagawa, H. doi  openurl
  Title Spatial distribution of water in the stratosphere of Jupiter from Herschel HIFI and PACS observations Type Journal Article
  Year 2013 Publication Astron. Astrophys. Abbreviated Journal  
  Volume 553 Issue Pages A21 (1 to 16)  
  Keywords HEB mixer applications, HIFI, Herschel  
  Abstract (up) Context. In the past 15 years, several studies suggested that water in the stratosphere of Jupiter originated from the Shoemaker-Levy 9 (SL9) comet impacts in July 1994, but a direct proof was missing. Only a very sensitive instrument observing with high spectral/spatial resolution can help to solve this problem. This is the case of the Herschel Space Observatory, which is the first telescope capable of mapping water in Jupiter's stratosphere.

Aims. We observed the spatial distribution of the water emission in Jupiter's stratosphere with the Heterodyne Instrument for the Far Infrared (HIFI) and the Photodetector Array Camera and Spectrometer (PACS) onboard Herschel to constrain its origin. In parallel, we monitored Jupiter's stratospheric temperature with the NASA Infrared Telescope Facility (IRTF) to separate temperature from water variability.

Methods. We obtained a 25-point map of the 1669.9 GHz water line with HIFI in July 2010 and several maps with PACS in October 2009 and December 2010. The 2010 PACS map is a 400-point raster of the water 66.4 μm emission. Additionally, we mapped the methane ν4 band emission to constrain the stratospheric temperature in Jupiter in the same periods with the IRTF.

Results. Water is found to be restricted to pressures lower than 2 mbar. Its column density decreases by a factor of 2–3 between southern and northern latitudes, consistently between the HIFI and the PACS 66.4 μm maps. We infer that an emission maximum seen around 15 °S is caused by a warm stratospheric belt detected in the IRTF data.

Conclusions. Latitudinal temperature variability cannot explain the global north-south asymmetry in the water maps. From the latitudinal and vertical distributions of water in Jupiter's stratosphere, we rule out interplanetary dust particles as its main source. Furthermore, we demonstrate that Jupiter's stratospheric water was delivered by the SL9 comet and that more than 95% of the observed water comes from the comet according to our models.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1085  
Permanent link to this record
 

 
Author Pineda, J. L.; Langer, W. D.; Velusamy, T.; Goldsmith, P. F. doi  openurl
  Title A Herschel [C ii] Galactic plane survey. I. The global distribution of ISM gas components Type Journal Article
  Year 2013 Publication Astron. Astrophys. Abbreviated Journal  
  Volume 554 Issue Pages A103  
  Keywords HEB mixer applications, HIFI, Herschel, ISM: general / stars: formation / evolution / ISM: clouds / ISM: structure / submillimeter: ISM  
  Abstract (up) Context. The [C ii] 158 μm line is an important tool for understanding the life cycle of interstellar matter. Ionized carbon is present in a variety of phases of the interstellar medium (ISM), including the diffuse ionized medium, warm and cold atomic clouds, clouds in transition from atomic to molecular, and dense and warm photon dominated regions.

Aims. Velocity-resolved observations of [C ii] are the most powerful technique available to disentangle the emission produced by these components. These observations can also be used to trace CO-dark H2 gas and determine the total mass of the ISM.

Methods. The Galactic Observations of Terahertz C+ (GOT C+) project surveys the [C ii] 158 μm line over the entire Galactic disk with velocity-resolved observations using the Herschel/HIFI instrument. We present the first longitude-velocity maps of the [C ii] emission for Galactic latitudes b = 0°, ±0.5°, and ±1.0°. We combine these maps with those of H i, 12CO, and 13CO to separate the different phases of the ISM and study their properties and distribution in the Galactic plane.

Results. [C ii] emission is mostly associated with spiral arms, mainly emerging from Galactocentric distances between 4 and 10 kpc. It traces the envelopes of evolved clouds as well as clouds that are in the transition between atomic and molecular. We estimate that most of the observed [C ii] emission is produced by dense photon dominated regions (~47%), with smaller contributions from CO-dark H2 gas (~28%), cold atomic gas (~21%), and ionized gas (~4%). Atomic gas inside the Solar radius is mostly in the form of cold neutral medium (CNM), while the warm neutral medium gas dominates the outer galaxy. The average fraction of CNM relative to total atomic gas is ~43%. We find that the warm and diffuse CO-dark H2 is distributed over a larger range of Galactocentric distances (4–11 kpc) than the cold and dense H2 gas traced by 12CO and 13CO (4–8 kpc). The fraction of CO-dark H2 to total H2 increases with Galactocentric distance, ranging from ~20% at 4 kpc to ~80% at 10 kpc. On average, CO-dark H2 accounts for ~30% of the molecular mass of the Milky Way. When the CO-dark H2 component is included, the radial distribution of the CO-to-H2 conversion factor is steeper than that when only molecular gas traced by CO is considered. Most of the observed [C ii] emission emerging from dense photon dominated regions is associated with modest far-ultraviolet fields in the range χ0 â‰<192> 1 – 30.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1100  
Permanent link to this record
 

 
Author Korneev, A.; Korneeva, Y.; Manova, N.; Larionov, P.; Divochiy, A.; Semenov, A.; Chulkova, G.; Vachtomin, Y.; Smirnov, K.; Goltsman, G. url  doi
openurl 
  Title Recent nanowire superconducting single-photon detector optimization for practical applications Type Journal Article
  Year 2013 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.  
  Volume 23 Issue 3 Pages 2201204 (1 to 4)  
  Keywords SSPD, SNSPD  
  Abstract (up) In this paper, we present our approaches to the development of fiber-coupled superconducting single photon detectors with enhanced photon absorption. For such devices we have measured detection efficiency in wavelength range from 500 to 2000 nm. The best fiber coupled devices exhibit detection efficiency of 44.5% at 1310 nm wavelength and 35.5% at 1550 nm at 10 dark counts per second.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ akorneev @ KorneevIEEE2013 Serial 996  
Permanent link to this record
 

 
Author Zhang, W.; Miao, W.; Li, S. L.; Zhou, K. M.; Shi, S. C.; Gao, J. R.; Goltsman, G. N. url  doi
openurl 
  Title Measurement of the spectral response of spiral-antenna coupled superconducting hot electron bolometers Type Journal Article
  Year 2013 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.  
  Volume 23 Issue 3 Pages 2300804-2300804  
  Keywords NbN HEB detector  
  Abstract (up) Measured spectral response of spiral-antenna coupled superconducting hot electron bolometers (HEBs) often drops dramatically at frequencies that are still within the frequency range of interest (e.g., ~ 5 THz). This is inconsistent with the implied low receiver noise temperatures from the same measurements. To understand this discrepancy, we exhaustively test and calibrate the thermal sources used in Fourier transform spectrometer measurements. We first investigate the absolute emission spectrum of high-pressure Hg arc lamp, then measure the spectral response of two spiral-antenna coupled NbN HEBs with a Martin-Puplett interferometer as spectrometer and 77 K blackbody as broadband signal source. The measured absolute emission spectrum of Hg arc lamp is proportional to frequency, corresponding to an equivalent blackbody temperature of 4000 K at 1 THz, 1500 K at 3 THz, and 800 K at 5 THz, respectively. Measured spectral response of spiral-antenna coupled NbN HEBs, corrected for air absorption, is nearly flat in the frequency range of 0.5-4 THz, consistent with simulated coupling efficiency between HEB and spiral-antenna. These results explain the discrepancy, and prove that spiral-antenna coupled superconducting NbN HEBs work well in a wide frequency range. In addition, this calibration method and these results are broadly applicable to other quasi-optical THz receivers.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1051-8223 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1371  
Permanent link to this record
 

 
Author Beck, M.; Rousseau, I.; Klammer, M.; Leiderer, P.; Mittendorff, M.; Winnerl, S.; Helm, M.; Gol'tsman, G.N.; Demsar, J. url  doi
openurl 
  Title Transient increase of the energy gap of superconducting NbN thin films excited by resonant narrow-band terahertz pulses Type Journal Article
  Year 2013 Publication Phys. Rev. Lett. Abbreviated Journal Phys. Rev. Lett.  
  Volume 110 Issue 26 Pages 267003 (1 to 5)  
  Keywords NbN thin films, energy gap  
  Abstract (up) Observations of radiation-enhanced superconductivity have thus far been limited to a few type-I superconductors (Al, Sn) excited at frequencies between the inelastic scattering rate and the superconducting gap frequency 2Delta/h. Utilizing intense, narrow-band, picosecond, terahertz pulses, tuned to just below and above 2Delta/h of a BCS superconductor NbN, we demonstrate that the superconducting gap can be transiently increased also in a type-II dirty-limit superconductor. The effect is particularly pronounced at higher temperatures and is attributed to radiation induced nonthermal electron distribution persisting on a 100 ps time scale.  
  Address Department of Physics and Center for Applied Photonics, University of Konstanz, D-78457, Germany  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9007 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:23848912 Approved no  
  Call Number Serial 1370  
Permanent link to this record
 

 
Author Marsili, F.; Verma, V. B.; Stern, J. A.; Harrington, S.; Lita, A. E.; Gerrits, T.; Vayshenker, I.; Baek, B.; Shaw, M. D.; Mirin, R. P.; Nam, S. W. doi  openurl
  Title Detecting single infrared photons with 93% system efficiency Type Journal Article
  Year 2013 Publication Nat. Photon. Abbreviated Journal  
  Volume 7 Issue 3 Pages 210-214  
  Keywords SSPD quantum efficiency  
  Abstract (up) Single-photon detectors1 at near-infrared wavelengths with high system detection efficiency (>90%), low dark count rate (<1 c.p.s.), low timing jitter (<100 ps) and short reset time (<100 ns) would enable landmark experiments in a variety of fields2, 3, 4, 5, 6. Although some of the existing approaches to single-photon detection fulfil one or two of the above specifications1, to date, no detector has met all of the specifications simultaneously. Here, we report on a fibre-coupled single-photon detection system that uses superconducting nanowire single-photon detectors7 and closely approaches the ideal performance of single-photon detectors. Our detector system has a system detection efficiency (including optical coupling losses) greater than 90% in the wavelength range λ = 1,520–1,610 nm, with a device dark count rate (measured with the device shielded from any background radiation) of ~1 c.p.s., timing jitter of ~150 ps full-width at half-maximum (FWHM) and reset time of 40 ns.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1056  
Permanent link to this record
 

 
Author Elezov, M. S.; Semenov, A. V.; An, P. P.; Tarkhov, M. A.; Goltsman, G. N.; Kardakova, A. I.; Kazakov, A. Y. url  doi
openurl 
  Title Investigating the detection regimes of a superconducting single-photon detector Type Journal Article
  Year 2013 Publication J. Opt. Technol. Abbreviated Journal J. Opt. Technol.  
  Volume 80 Issue 7 Pages 435  
  Keywords SSPD, quantum efficiency  
  Abstract (up) The detection regimes of a superconducting single-photon detector have been investigated. A technique is proposed for determining the regions in which “pure regimes” predominate. Based on experimental data, the dependences of the internal quantum efficiency on the bias current are determined in the one-, two-, and three-photon detection regimes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1070-9762 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1172  
Permanent link to this record
 

 
Author Lusche, Robert; Semenov, Alexey; Huebers, Heinz-Willhelm; Ilin, Konstantin; Siegel, Michael; Korneeva, Yuliya; Trifonov, Andrey; Korneev, Alexander; Goltsman, Gregory url  openurl
  Title Effect of the wire geometry and an externally applied magnetic field on the detection efficiency of superconducting nanowire single-photon detectors Type Abstract
  Year 2013 Publication INIS Abbreviated Journal INIS  
  Volume 46 Issue 8 Pages 1-3  
  Keywords TaN, NbN SSPD, SNSPD  
  Abstract (up) The interest in single-photon detectors in the near-infrared wavelength regime for applications, e.g. in quantum cryptography has immensely increased in the last years. Superconducting nanowire single-photon detectors (SNSPD) already show quite reasonable detection efficiencies in the NIR which can even be further improved. Novel theoretical approaches including vortex-assisted photon counting state that the detection efficiency in the long wavelength region can be enhanced by the detector geometry and an applied magnetic field. We present spectral measurements in the wavelength range from 350-2500 nm of the detection efficiency of meander-type TaN and NbN SNSPD with varying nanowire line width from 80 to 250 nm. Due to the used experimental setup we can accurately normalize the measured spectra and are able to extract the intrinsic detection efficiency (IDE) of our detectors. The results clearly indicate an improvement of the IDE depending on the wire width according to the theoretic models. Furthermore we experimentally found that the smallest detectable photon-flux can be increased by applying a small magnetic field to the detectors.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1374  
Permanent link to this record
 

 
Author Collins, M. J.; Xiong, C.; Rey, I. H.; Vo, T. D.; He, J.; Shahnia, S.; Reardon, C.; Krauss, T. F.; Steel, M. J.; Clark, M.J.; & Eggleton, B.J. doi  openurl
  Title Integrated spatial multiplexing of heralded single-photon sources Type Journal Article
  Year 2013 Publication Nature Communications Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract (up) The non-deterministic nature of photon sources is a key limitation for single-photon quantum processors. Spatial multiplexing overcomes this by enhancing the heralded single-photon yield without enhancing the output noise. Here the intrinsic statistical limit of an individual source is surpassed by spatially multiplexing two monolithic silicon-based correlated photon pair sources in the telecommunications band, demonstrating a 62.4% increase in the her- alded single-photon output without an increase in unwanted multipair generation. We further demonstrate the scalability of this scheme by multiplexing photons generated in two waveguides pumped via an integrated coupler with a 63.1% increase in the heralded photon rate. This demonstration paves the way for a scalable architecture for multiplexing many photon sources in a compact integrated platform and achieving efficient two-photon inter- ference, required at the core of optical quantum computing and quantum communication protocols.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ alex_kazakov @ Serial 1001  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: