toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Beck, M.; Rousseau, I.; Klammer, M.; Leiderer, P.; Mittendorff, M.; Winnerl, S.; Helm, M.; Gol'tsman, G.N.; Demsar, J. url  doi
openurl 
  Title Transient increase of the energy gap of superconducting NbN thin films excited by resonant narrow-band terahertz pulses Type Journal Article
  Year 2013 Publication Phys. Rev. Lett. Abbreviated Journal Phys. Rev. Lett.  
  Volume 110 Issue 26 Pages (down) 267003 (1 to 5)  
  Keywords NbN thin films, energy gap  
  Abstract Observations of radiation-enhanced superconductivity have thus far been limited to a few type-I superconductors (Al, Sn) excited at frequencies between the inelastic scattering rate and the superconducting gap frequency 2Delta/h. Utilizing intense, narrow-band, picosecond, terahertz pulses, tuned to just below and above 2Delta/h of a BCS superconductor NbN, we demonstrate that the superconducting gap can be transiently increased also in a type-II dirty-limit superconductor. The effect is particularly pronounced at higher temperatures and is attributed to radiation induced nonthermal electron distribution persisting on a 100 ps time scale.  
  Address Department of Physics and Center for Applied Photonics, University of Konstanz, D-78457, Germany  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9007 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:23848912 Approved no  
  Call Number Serial 1370  
Permanent link to this record
 

 
Author Kardakova, A.; Finkel, M.; Morozov, D.; Kovalyuk, V.; An, P.; Dunscombe, C.; Tarkhov, M.; Mauskopf, P.; Klapwijk, T.M.; Goltsman, G. doi  openurl
  Title The electron-phonon relaxation time in thin superconducting titanium nitride films Type Journal Article
  Year 2013 Publication Appl. Phys. Lett. Abbreviated Journal Appl. Phys. Lett.  
  Volume 103 Issue 25 Pages (down) 252602 (1 to 4)  
  Keywords disordered TiN films, electron-phonon relaxation time  
  Abstract We report on the direct measurement of the electron-phonon relaxation time, τeph, in disordered TiN films. Measured values of τeph are from 5.5 ns to 88 ns in the 4.2 to 1.7 K temperature range and consistent with a T−3 temperature dependence. The electronic density of states at the Fermi level N0 is estimated from measured material parameters. The presented results confirm that thin TiN films are promising candidate-materials for ultrasensitive superconducting detectors.

The work was supported by the Ministry of Education and Science of the Russian Federation, Contract No. 14.B25.31.0007 and by the RFBR Grant No. 13-02-91159.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ kovalyuk @ Serial 941  
Permanent link to this record
 

 
Author Peltonen, J. T.; Astafiev, O. V.; Korneeva, Y. P.; Voronov, B. M.; Korneev, A. A.; Charaev, I. M.; Semenov, A. V.; Golt'sman, G. N.; Ioffe, L. B.; Klapwijk, T. M.; Tsai, J. S. url  doi
openurl 
  Title Coherent flux tunneling through NbN nanowires Type Journal Article
  Year 2013 Publication Phys. Rev. B Abbreviated Journal Phys. Rev. B  
  Volume 88 Issue 22 Pages (down) 220506 (1 to 5)  
  Keywords NbN nanowires  
  Abstract We demonstrate evidence of coherent magnetic flux tunneling through superconducting nanowires patterned in a thin highly disordered NbN film. The phenomenon is revealed as a superposition of flux states in a fully metallic superconducting loop with the nanowire acting as an effective tunnel barrier for the magnetic flux, and reproducibly observed in different wires. The flux superposition achieved in the fully metallic NbN rings proves the universality of the phenomenon previously reported for InOx. We perform microwave spectroscopy and study the tunneling amplitude as a function of the wire width, compare the experimental results with theories, and estimate the parameters for existing theoretical models.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1369  
Permanent link to this record
 

 
Author Fedorov, G.; Kardakova, A.; Gayduchenko, I.; Charayev, I.; Voronov, B.M.; Finkel, M.; Klapwijk, T.M.; Morozov, S.; Presniakov, M.; Bobrinetskiy, I.; Ibragimov, R.; Goltsman, G. url  doi
openurl 
  Title Photothermoelectric response in asymmetric carbon nanotube devices exposed to sub-terahertz radiation Type Journal Article
  Year 2013 Publication Appl. Phys. Lett. Abbreviated Journal Appl. Phys. Lett.  
  Volume 103 Issue 18 Pages (down) 181121 (1 to 5)  
  Keywords carbon nanotubes, CNT, THz radiation, SiO2 substrate  
  Abstract We report on the voltage response of carbon nanotube devices to sub-terahertz (THz) radiation. The devices contain carbon nanotubes (CNTs), which are over their length partially suspended and partially Van der Waals bonded to a SiO2 substrate, causing a difference in thermal contact. We observe a DC voltage upon exposure to 140 GHz radiation. Based on the observed gate voltage and power dependence, at different temperatures, we argue that the observed signal is both thermal and photovoltaic. The room temperature responsivity in the microwave to THz range exceeds that of CNT based devices reported before. Authors thank Professor P. Barbara for providing the catalyst for CNT growth and Dr. N. Chumakov and V. Rylkov for stimulating discussions. The work was supported by the RFBR (Grant No. 12-02-01291-a) and by the Ministry of Education and Science of the Russian Federation (Contract No. 14.B25.31.0007). G.F. acknowledges support of the RFBR grant 12-02-01005-a.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1171  
Permanent link to this record
 

 
Author Coumou, P. C. J. J.; Driessen, E. F. C.; Bueno, J.; Chapelier, C.; Klapwijk, T. M. url  doi
openurl 
  Title Electrodynamic response and local tunneling spectroscopy of strongly disordered superconducting TiN films Type Journal Article
  Year 2013 Publication Phys. Rev. B Abbreviated Journal  
  Volume 88 Issue 18 Pages (down) 180505 (1 to 5)  
  Keywords strongly disordered superconducting TiN films, microwave resonators  
  Abstract We have studied the electrodynamic response of strongly disordered superconducting TiN films using microwave resonators, where the disordered superconductor is the resonating element in a high-quality superconducting environment of NbTiN. We describe the response assuming an effective pair-breaking mechanism modifying the density of states and compare this to local tunneling spectra obtained using scanning tunneling spectroscopy. For the least disordered film (kFl=8.7, Rs=13Ω), we find good agreement, whereas for the most disordered film (kFl=0.82, Rs=4.3kΩ), there is a strong discrepancy, which signals the breakdown of a model based on uniform properties.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1069  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: