toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links (down)
Author Gayduchenko, I.; Kardakova, A.; Fedorov, G.; Voronov, B.; Finkel, M.; Jiménez, D.; Morozov, S.; Presniakov, M.; Goltsman, G. url  doi
openurl 
  Title Response of asymmetric carbon nanotube network devices to sub-terahertz and terahertz radiation Type Journal Article
  Year 2015 Publication J. Appl. Phys. Abbreviated Journal J. Appl. Phys.  
  Volume 118 Issue 19 Pages 194303  
  Keywords terahertz detectors, asymmetric carbon nanotubes, CNT  
  Abstract Demand for efficient terahertz radiation detectors resulted in intensive study of the asymmetric carbon nanostructures as a possible solution for that problem. It was maintained that photothermoelectric effect under certain conditions results in strong response of such devices to terahertz radiation even at room temperature. In this work, we investigate different mechanisms underlying the response of asymmetric carbon nanotube (CNT) based devices to sub-terahertz and terahertz radiation. Our structures are formed with CNT networks instead of individual CNTs so that effects probed are more generic and not caused by peculiarities of an individual nanoscale object. We conclude that the DC voltage response observed in our structures is not only thermal in origin. So called diode-type response caused by asymmetry of the device IV characteristic turns out to be dominant at room temperature. Quantitative analysis provides further routes for the optimization of the device configuration, which may result in appearance of novel terahertz radiation detectors.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1169  
Permanent link to this record
 

 
Author Ferrari, S.; Kahl, O.; Kovalyuk, V.; Goltsman, G. N.; Korneev, A.; Pernice, W. H. P. url  doi
openurl 
  Title Waveguide-integrated single- and multi-photon detection at telecom wavelengths using superconducting nanowires Type Journal Article
  Year 2015 Publication Appl. Phys. Lett. Abbreviated Journal Appl. Phys. Lett.  
  Volume 106 Issue 15 Pages 151101 (1 to 5)  
  Keywords SSPD, SNSPD  
  Abstract We investigate single- and multi-photon detection regimes of superconducting nanowire detectors embedded in silicon nitride nanophotonic circuits. At near-infrared wavelengths, simultaneous detection of up to three photons is observed for 120 nm wide nanowires biased far from the critical current, while narrow nanowires below 100 nm provide efficient single photon detection. A theoretical model is proposed to determine the different detection regimes and to calculate the corresponding internal quantum efficiency. The predicted saturation of the internal quantum efficiency in the single photon regime agrees well with plateau behavior observed at high bias currents.

W. H. P. Pernice acknowledges support by the DFG Grant Nos. PE 1832/1-1 and PE 1832/1-2 and the Helmholtz society through Grant No. HIRG-0005. The Ph.D. education of O. Kahl is embedded in the Karlsruhe School of Optics and Photonics (KSOP). G. N. Goltsman acknowledges support by Russian Federation President Grant HШ-1918.2014.2 and Ministry of Education and Science of the Russian Federation Contract No.: RFMEFI58614X0007. A. Korneev acknowledges support by Statement Task No. 3.1846.2014/k. V. Kovalyuk acknowledges support by Statement Task No. 2327. We also acknowledge support by the Deutsche Forschungsgemeinschaft (DFG) and the State of Baden-Württemberg through the DFG-Center for Functional Nanostructures (CFN) within subproject A6.4. We thank S. Kühn and S. Diewald for the help with device fabrication as well as B. Voronov and A. Shishkin for help with NbN thin film deposition and A. Semenov for helpful discussion about the detection mechanism of nanowire SSPD's.

The authors declare no competing financial interests.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1211  
Permanent link to this record
 

 
Author Smirnov, Konstantin; Vachtomin, Yury; Divochiy, Alexander; Antipov, Andrey; Goltsman, Gregory doi  openurl
  Title Dependence of dark count rates in superconducting single photon detectors on the filtering effect of standard single mode optical fibers Type Journal Article
  Year 2015 Publication Appl. Phys. Express Abbreviated Journal Appl. Phys. Express  
  Volume 8 Issue 2 Pages 022501 (1 to 4)  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher IOP Publishing Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1882-0778 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ sasha @ smirnov2015dependence Serial 1049  
Permanent link to this record
 

 
Author Takesue, Hiroki; Dyer, Shellee D.; Stevens, Martin J.; Verma, Varun; Mirin, Richard P.; Nam, Sae Woo doi  openurl
  Title Quantum teleportation over 100 km of fiber using highly efficient superconducting nanowire single-photon detectors Type Journal Article
  Year 2015 Publication Abbreviated Journal Optica  
  Volume 2 Issue Pages  
  Keywords  
  Abstract Quantum teleportation is an essential quantum operation by which we can transfer an unknown quantum state to a remote location with the help of quantum entanglement and classical communication. Since the first experimental demonstrations using photonic qubits and continuous variables, the distance of photonic quantum teleportation over free-space channels has continued to increase and has reached >100 km. On the other hand, quantum teleportation over optical fiber has been challenging, mainly because the multifold photon detection that inevitably accompanies quantum teleportation experi- ments has been very inefficient due to the relatively low de- tection efficiencies of typical telecom-band single-photon detectors. Here, we report on quantum teleportation over optical fiber using four high-detection-efficiency supercon- ducting nanowire single-photon detectors (SNSPDs). These SNSPDs make it possible to perform highly efficient multi- fold photon measurements, allowing us to confirm that the quantum states of input photons were successfully tele- ported over 100 km of fiber with an average fidelity of 83.7  2.0%.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ alex_kazakov @ Serial 1004  
Permanent link to this record
 

 
Author Anosov, A. A.; Nemchenko, O. Yu.; Less, Yu. A.; Kazanskii, A. S.; Mansfel'd, A. D. doi  openurl
  Title Possibilities of acoustic thermometry for controlling targeted drug delivery Type Journal Article
  Year 2015 Publication Acoust. Phys. Abbreviated Journal  
  Volume 61 Issue 4 Pages 488-493  
  Keywords acoustic thermometry, liposome suspension, thermography  
  Abstract Model acoustic thermometry experiments were conducted during heating of an aqueous liposome suspension. Heating was done to achieve the liposome phase transition temperature. At the moment of the phase transition, the thermal acoustic signal achieved a maximum and decreased, despite continued heating. During subsequent cooling of the suspension, when lipids again passed through the phase transition point, the thermal acoustic signal again increased, despite a reduction in temperature. This effect is related to an increase in ultrasound absorption by the liposome suspension at the moment of the lipid phase transition. The result shows that acoustic thermography can be used to control targeted delivery of drugs mixed in thermally sensitive liposomes, the integrity of which is violated during heating to the phase transition temperature.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1130  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: