|   | 
Details
   web
Records
Author Iomdina, E. N.; Goltsman, G. N.; Seliverstov, S. V.; Sianosyan, A. A.; Teplyakova, K. O.; Rusova, A. A.
Title Study of transmittance and reflectance spectra of the cornea and the sclera in the THz frequency range Type Journal Article
Year 2016 Publication J. Biomed. Opt. Abbreviated Journal J. Biomed. Opt.
Volume 21 Issue 9 Pages 97002 (1 to 5)
Keywords BWO, IMPATT diode, Schottky diode, medicine, animals, cornea, physiology, humans, rabbits, sclera diagnostic imaging, physiology
Abstract An adequate water balance (hydration extent) is one of the basic factors of normal eye function, including its external shells: the cornea and the sclera. Adequate control of corneal and scleral hydration is very important for early diagnosis of a variety of eye diseases, stating indications for and contraindications against keratorefractive surgeries and the choice of contact lens correction solutions. THz systems of creating images in reflected beams are likely to become ideal instruments of noninvasive control of corneal and scleral hydration degrees. This paper reports on the results of a study involving transmittance and reflectance spectra for the cornea and the sclera of rabbit and human eyes, as well as those of the rabbit eye, in the frequency range of 0.13 to 0.32 THz. The dependence of the reflectance coefficient of these tissues on water mass percentage content was determined. The experiments were performed on three corneas, three rabbit scleras, two rabbit eyes, and three human scleras. The preliminary results demonstrate that the proposed technique, based on the use of a continuous THz radiation, may be utilized to create a device for noninvasive control of corneal and scleral hydration, which has clear potential of broad practical application.
Address (up) Moscow State Pedagogical University, Department of Physics, 29 Malaya Pirogovskaya Street, Moscow 119435, Russia
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1083-3668 ISBN Medium
Area Expedition Conference
Notes PMID:27626901 Approved no
Call Number Serial 1335
Permanent link to this record
 

 
Author Arutyunov, K. Y.; Ramos-Alvarez, A.; Semenov, A. V.; Korneeva, Y. P.; An, P. P.; Korneev, A. A.; Murphy, A.; Bezryadin, A.; Gol'tsman, G. N.
Title Superconductivity in highly disordered NbN nanowires Type Journal Article
Year 2016 Publication Nanotechnol. Abbreviated Journal Nanotechnol.
Volume 27 Issue 47 Pages 47lt02 (1 to 8)
Keywords NbN nanowires
Abstract The topic of superconductivity in strongly disordered materials has attracted significant attention. These materials appear to be rather promising for fabrication of various nanoscale devices such as bolometers and transition edge sensors of electromagnetic radiation. The vividly debated subject of intrinsic spatial inhomogeneity responsible for the non-Bardeen-Cooper-Schrieffer relation between the superconducting gap and the pairing potential is crucial both for understanding the fundamental issues of superconductivity in highly disordered superconductors, and for the operation of corresponding nanoelectronic devices. Here we report an experimental study of the electron transport properties of narrow NbN nanowires with effective cross sections of the order of the debated inhomogeneity scales. The temperature dependence of the critical current follows the textbook Ginzburg-Landau prediction for the quasi-one-dimensional superconducting channel I c approximately (1-T/T c)(3/2). We find that conventional models based on the the phase slip mechanism provide reasonable fits for the shape of R(T) transitions. Better agreement with R(T) data can be achieved assuming the existence of short 'weak links' with slightly reduced local critical temperature T c. Hence, one may conclude that an 'exotic' intrinsic electronic inhomogeneity either does not exist in our structures, or, if it does exist, it does not affect their resistive state properties, or does not provide any specific impact distinguishable from conventional weak links.
Address (up) National Research University Higher School of Economics, Moscow Institute of Electronics and Mathematics,109028, Moscow, Russia. P L Kapitza Institute for Physical Problems RAS, Moscow, 119334, Russia
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0957-4484 ISBN Medium
Area Expedition Conference
Notes PMID:27782000 Approved no
Call Number Serial 1332
Permanent link to this record