toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (down) Voss, Chris; Raz, Tahl isbn  openurl
  Title Never split the difference: negotiating as if your life depended on it Type Book Whole
  Year 2016 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords business, negotiating, psychology, FBI  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher HarperCollins Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-0-06-240780-1 Medium  
  Area Expedition Conference  
  Notes pdf, epub, mp3 (audio book) -- 85 MB in total Approved no  
  Call Number Serial 1838  
Permanent link to this record
 

 
Author (down) Vetter, A.; Ferrari, S.; Rath, P.; Alaee, R.; Kahl, O.; Kovalyuk, V.; Diewald, S.; Goltsman, G. N.; Korneev, A.; Rockstuhl, C.; Pernice, W. H. P. url  doi
openurl 
  Title Cavity-enhanced and ultrafast superconducting single-photon detectors Type Journal Article
  Year 2016 Publication Nano Lett. Abbreviated Journal Nano Lett.  
  Volume 16 Issue 11 Pages 7085-7092  
  Keywords SSPD; SNSPD; multiphoton detection; nanophotonic circuit; photonic crystal cavity  
  Abstract Ultrafast single-photon detectors with high efficiency are of utmost importance for many applications in the context of integrated quantum photonic circuits. Detectors based on superconductor nanowires attached to optical waveguides are particularly appealing for this purpose. However, their speed is limited because the required high absorption efficiency necessitates long nanowires deposited on top of the waveguide. This enhances the kinetic inductance and makes the detectors slow. Here, we solve this problem by aligning the nanowire, contrary to usual choice, perpendicular to the waveguide to realize devices with a length below 1 mum. By integrating the nanowire into a photonic crystal cavity, we recover high absorption efficiency, thus enhancing the detection efficiency by more than an order of magnitude. Our cavity enhanced superconducting nanowire detectors are fully embedded in silicon nanophotonic circuits and efficiently detect single photons at telecom wavelengths. The detectors possess subnanosecond decay ( approximately 120 ps) and recovery times ( approximately 510 ps) and thus show potential for GHz count rates at low timing jitter ( approximately 32 ps). The small absorption volume allows efficient threshold multiphoton detection.  
  Address Institute of Physics, University of Munster , 48149 Munster, Germany  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1530-6984 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:27759401 Approved no  
  Call Number Serial 1208  
Permanent link to this record
 

 
Author (down) Trifonov, A.; Tong, C.-Y. E.; Lobanov, Y.; Kaurova, N.; Blundell, R.; Goltsman, G. url  openurl
  Title Gap frequency and photon absorption in a hot electron bolometer Type Conference Article
  Year 2016 Publication Proc. 27th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 27th Int. Symp. Space Terahertz Technol.  
  Volume Issue Pages 121  
  Keywords NbN HEB; Si membrane  
  Abstract The superconducting energy gap is a crucial parameter of a superconductor when used in mixing applications. In the case of the SIS mixer, the mixing process is efficient for frequencies below the energy gap, whereas, in the case of the HEB mixer, the mixing process is most efficient at frequencies above the gap, where photon absorption takes place more readily. We have investigated the photon absorption phenomenon around the gap frequency of HEB mixers based on NbN films deposited on silicon membranes. Apart from studying the pumped I-V curves of HEB devices, we have also probed them with microwave radiation, as previously described [1]. At frequencies far below the gap frequency, the pumped I-V curves show abrupt switching between the superconducting and resistive states. For the NbN HEB mixers we tested, which have critical temperatures of ~9 K, this is true for frequencies below about 400 GHz. As the pump frequency is increased beyond 400 GHz, the resistive state extends towards zero bias and at some point a small region of negative differential resistance appears close to zero bias. In this region, the microwave probe reveals that the device impedance is changing randomly with time. As the pump frequency is further increased, this random impedance change develops into relaxation oscillations, which can be observed by the demodulation of the reflected microwave probe. Initially, these oscillations take the form of several frequencies grouped together under an envelope. As we approach the gap frequency, the multiple frequency relaxation oscillations coalesce into a single frequency of a few MHz. The resultant square-wave nature of the oscillation is a clear indication that the device is in a bi-stable state, switching between the superconducting and normal state. Above the gap frequency, it is possible to obtain a pumped I-V curve with no negative differential resistance above a threshold pumping level. Below this pumping level, the device demonstrates bi-stability, and regular relaxation oscillation at a few MHz is observed as a function of pump power. The threshold pumping level is clearly related to the amount of power absorbed by the device and its phonon cooling. From the above experiment, we can derive the gap frequency of the NbN film, which is 585 GHz for our 6 μm thin silicon membrane-based device. We also confirm that the HEB mixer is not an efficient photon absorber for radiation below the gap frequency. 1. A. Trifonov et al., “Probing the stability of HEB mixers with microwave injection”, IEEE Trans. Appl. Supercond., vol. 25, no. 3, June 2015.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1204  
Permanent link to this record
 

 
Author (down) Tret'yakov, I. V.; Kaurova, N. S.; Voronov, B. M.; Anfert'ev, V. A.; Revin, L. S.; Vaks, V. L.; Gol'tsman, G. N. doi  openurl
  Title The influence of the diffusion cooling on the noise band of the superconductor NbN hot-electron bolometer operating in the terahertz range Type Journal Article
  Year 2016 Publication Tech. Phys. Lett. Abbreviated Journal  
  Volume 42 Issue 6 Pages 563-566  
  Keywords HEB, noise bandwidth, conversion gain bandwidth, noise temperature, Andreev reflection  
  Abstract Results of an experimental study of the noise temperature (Tn) and noise bandwidth (NBW) of the superconductor NbN hot-electron bolometer (HEB) mixer as a function of its temperature (Tb) are presented. It was determined that the NBW of the mixer is significantly wider at temperatures close to the critical ones (Tc) than are values measured at 4.2 K. The NBW of the mixer measured at the heterodyne frequency of 2.5 THz at temperature Tb close to Tc was ~13 GHz, as compared with 6 GHz at Tb = 4.2 K. This experiment clearly demonstrates the limitation of the thermal flow from the NbN bridge at Tb â‰<aa> Tc for mixers manufactured by the in situ technique. This limitation is close in its nature to the Andreev reflection on the superconductor/ metal boundary. In this case, the noise temperature of the studied mixer increased from 1100 to 3800 K.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1106  
Permanent link to this record
 

 
Author (down) Smirnov, K. V.; Divochiy, A. V.; Vakhtomin, Y. B.; Sidorova, M. V.; Karpova, U. V.; Morozov, P. V.; Seleznev, V. A.; Zotova, A. N.; Vodolazov, D. Y. url  doi
openurl 
  Title Rise time of voltage pulses in NbN superconducting single photon detectors Type Journal Article
  Year 2016 Publication Appl. Phys. Lett. Abbreviated Journal Appl. Phys. Lett.  
  Volume 109 Issue 5 Pages 052601  
  Keywords SSPD, SNSPD  
  Abstract We have found experimentally that the rise time of voltage pulse in NbN superconducting single photon detectors increases nonlinearly with increasing the length of the detector L. The effect is connected with dependence of resistance of the detector Rn, which appears after photon absorption, on its kinetic inductance Lk and, hence, on the length of the detector. This conclusion is confirmed by our calculations in the framework of two temperature model.

D.Yu.V. acknowledges the support from the Russian Foundation for Basic Research (Project No. 15-42-02365). K.V.S. acknowledges the financial support from the Ministry of Education and Science of the Russian Federation (Contract No. 3.2655.2014/K).
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1236  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: