Home | << 1 2 3 4 5 6 7 8 9 >> |
Records | |||||
---|---|---|---|---|---|
Author | Anfertev, V.; Vaks, V.; Revin, L.; Pentin, I.; Tretyakov, I.; Goltsman, G.; Vinogradov, E. A.; Naumov, A. V.; Gladush, M. G.; Karimullin, K. R. | ||||
Title | High resolution THz gas spectrometer based on semiconductor and superconductor devices | Type | Conference Article | ||
Year | 2017 | Publication | EPJ Web Conf. | Abbreviated Journal | EPJ Web Conf. |
Volume | 132 | Issue | Pages | 02001 (1 to 2) | |
Keywords | NbN HEB mixers, detectors, THz spectroscopy | ||||
Abstract | The high resolution THz gas spectrometer consists of a synthesizer based on Gunn generator with a semiconductor superlattice frequency multiplier as a radiation source, and an NbN hot electron bolometer in a direct detection mode as a THz radiation receiver was presented. The possibility of application of a quantum cascade laser as a local oscillator for a heterodyne receiver which is based on an NbN hot electron bolometer mixer is shown. The ways for further developing of the THz spectroscopy were outlined. | ||||
Address | |||||
Corporate Author | Thesis | ||||
Publisher | Place of Publication | Editor | |||
Language | Summary Language | Original Title | |||
Series Editor | Series Title | Abbreviated Series Title | |||
Series Volume | Series Issue | Edition | |||
ISSN | 2100-014X | ISBN | Medium | ||
Area | Expedition | Conference | |||
Notes | Approved | no | |||
Call Number | Serial | 1328 | |||
Permanent link to this record | |||||
Author | Antipov, S.; Trifonov, A.; Krause, S.; Meledin, D.; Desmaris, V.; Belitsky, V.; Gol’tsman, G. | ||||
Title | Gain bandwidth of NbN HEB mixers on GaN buffer layer operating at 2 THz local oscillator frequency | Type | Conference Article | ||
Year | 2017 | Publication | Proc. 28th Int. Symp. Space Terahertz Technol. | Abbreviated Journal | Proc. 28th Int. Symp. Space Terahertz Technol. |
Volume | Issue | Pages | 147-148 | ||
Keywords | NbN HEB mixers, GaN buffer-layer, IF bandwidth | ||||
Abstract | In this paper, we present IF bandwidth measurement results of NbN HEB mixers, which are employing NbN thin films grown on a GaN buffer-layer. The HEB mixers were operated in the heterodyne regime at a bath temperature of approximately 4.5 K and with a local oscillator operating at a frequency of 2 THz. A quantum cascade laser served as the local oscillator and a reference synthesizer based on a BWO generator (130-160 GHz) and a semiconductor superlattice (SSL) frequency multiplier was used as a signal source. By changing the LO frequency it was possible to record the IF response or gain bandwidth of the HEB with a spectrum analyzer at the operation point, which yielded lowest noise temperature. The gain bandwidth that was recorded in the heterodyne regime at 2 THz amounts to approximately 5 GHz and coincides well with a measurement that has been performed at elevated bath temperatures and lower LO frequency of 140 GHz. These findings strongly support that by using a GaN buffer-layer the phonon escape time of NbN HEBs can be significantly lower as compared to e.g. Si substrate, thus, providing higher gain bandwidth. | ||||
Address | |||||
Corporate Author | Thesis | ||||
Publisher | Place of Publication | Editor | |||
Language | Summary Language | Original Title | |||
Series Editor | Series Title | Abbreviated Series Title | |||
Series Volume | Series Issue | Edition | |||
ISSN | ISBN | Medium | |||
Area | Expedition | Conference | |||
Notes | Approved | no | |||
Call Number | Serial | 1175 | |||
Permanent link to this record | |||||
Author | Chuprina, I. N.; An, P. P.; Zubkova, E. G.; Kovalyuk, V. V.; Kalachev, A. A.; Gol'tsman, G. N. | ||||
Title | Optimisation of spontaneous four-wave mixing in a ring microcavity | Type | Conference Article | ||
Year | 2017 | Publication | J. Phys.: Conf. Ser. | Abbreviated Journal | J. Phys.: Conf. Ser. |
Volume | 47 | Issue | 10 | Pages | 887-891 |
Keywords | ring microcavity | ||||
Abstract | Abstract. A theory of spontaneous four-wave mixing in a ring microcavity is developed. The rate of emission of biphotons for pulsed and monochromatic pumping with allowance for the disper- sion of group velocities is analytically calculated. In the first case, pulses in the form of an increasing exponential are considered, which are optimal for excitation of an individual resonator mode. The behaviour of the group velocity dispersion as a function of the width and height of the waveguide is studied for a specific case of a ring microcavity made of silicon nitride. The results of the numeri- cal calculation are in good agreement with the experimental data. The ring microcavity is made of two types of waveguides: com- pletely etched and half etched. It is found that the latter allow for better control over the parameters in the manufacturing process, making them more predictable. | ||||
Address | |||||
Corporate Author | Thesis | ||||
Publisher | Place of Publication | Editor | |||
Language | Summary Language | Original Title | |||
Series Editor | Series Title | Abbreviated Series Title | |||
Series Volume | Series Issue | Edition | |||
ISSN | ISBN | Medium | |||
Area | Expedition | Conference | |||
Notes | Approved | no | |||
Call Number | RPLAB @ kovalyuk @ | Serial | 1142 | ||
Permanent link to this record | |||||
Author | Elezov, M. S.; Ozhegov, R. V.; Goltsman, G. N.; Makarov, V. | ||||
Title | Development of the experimental setup for investigation of latching of superconducting single-photon detector caused by blinding attack on the quantum key distribution system | Type | Conference Article | ||
Year | 2017 | Publication | EPJ Web of Conferences | Abbreviated Journal | EPJ Web of Conferences |
Volume | 132 | Issue | 2 | Pages | 2 |
Keywords | |||||
Abstract | Recently bright-light control of the SSPD has been demonstrated. This attack employed a “backdoor†in the detector biasing scheme. Under bright-light illumination, SSPD becomes resistive and remains “latched†in the resistive state even when the light is switched off. While the SSPD is latched, Eve can simulate SSPD single-photon response by sending strong light pulses, thus deceiving Bob. We developed the experimental setup for investigation of a dependence on latching threshold of SSPD on optical pulse length and peak power. By knowing latching threshold it is possible to understand essential requirements for development countermeasures against blinding attack on quantum key distribution system with SSPDs. |
||||
Address | |||||
Corporate Author | Thesis | ||||
Publisher | Place of Publication | Editor | |||
Language | Summary Language | Original Title | |||
Series Editor | Series Title | Abbreviated Series Title | |||
Series Volume | Series Issue | Edition | |||
ISSN | ISBN | Medium | |||
Area | Expedition | Conference | |||
Notes | Approved | no | |||
Call Number | RPLAB @ kovalyuk @ | Serial | 1116 | ||
Permanent link to this record | |||||
Author | Elezov, M. S.; Ozhegov, R. V.; Goltsman, G. N.; Makarov, V.; Vinogradov, E. A.; Naumov, A. V.; Gladush, M. G.; Karimullin, K. R. | ||||
Title | Development of the experimental setup for investigation of latching of superconducting single-photon detector caused by blinding attack on the quantum key distribution system | Type | Conference Article | ||
Year | 2017 | Publication | EPJ Web Conf. | Abbreviated Journal | EPJ Web Conf. |
Volume | 132 | Issue | Pages | 01004 (1 to 2) | |
Keywords | QKD, SSPD, SNSPD | ||||
Abstract | Recently bright-light control of the SSPD has been demonstrated. This attack employed a “backdoor” in the detector biasing scheme. Under bright-light illumination, SSPD becomes resistive and remains “latched” in the resistive state even when the light is switched off. While the SSPD is latched, Eve can simulate SSPD single-photon response by sending strong light pulses, thus deceiving Bob. We developed the experimental setup for investigation of a dependence on latching threshold of SSPD on optical pulse length and peak power. By knowing latching threshold it is possible to understand essential requirements for development countermeasures against blinding attack on quantum key distribution system with SSPDs. | ||||
Address | |||||
Corporate Author | Thesis | ||||
Publisher | Place of Publication | Editor | |||
Language | Summary Language | Original Title | |||
Series Editor | Series Title | Abbreviated Series Title | |||
Series Volume | Series Issue | Edition | |||
ISSN | 2100-014X | ISBN | Medium | ||
Area | Expedition | Conference | |||
Notes | Approved | no | |||
Call Number | Serial | 1327 | |||
Permanent link to this record |