Records |
Author |
Kahl, O.; Ferrari, S.; Kovalyuk, V.; Vetter, A.; Lewes-Malandrakis, G.; Nebel, C.; Korneev, A.; Goltsman, G.; Pernice, W. |
Title |
Spectrally multiplexed single-photon detection with hybrid superconducting nanophotonic circuits: supplementary material |
Type |
Miscellaneous |
Year |
2017 |
Publication |
Optica |
Abbreviated Journal |
|
Volume |
|
Issue |
|
Pages |
1-9 |
Keywords |
Quantum detectors; Spectrometers and spectroscopic instrumentation; Nanophotonics and photonic crystals; Fluorescence correlation spectroscopy; Fluorescence resonance energy transfer; Fluorescence spectroscopy; Imaging techniques; Optical components; Quantum key distribution |
Abstract |
This document provides supplementary information to “Spectrally multiplexed single-photon detection with hybrid superconducting nanophotonic circuits", DOI:10.1364/optica.4.000557. Here we detail the on-chip spectrometer design, its characterization and the experimental setup we used. In addition, we present a detailed report concerning the characterization of the superconducting nanowire single photon detectors. In the final sections, we describe sample preparation and characterization of the nanodiamonds containing silicon vacancy color centers. |
Address |
|
Corporate Author |
|
Thesis |
|
Publisher |
Osa |
Place of Publication |
|
Editor |
|
Language |
|
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
|
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
|
Approved |
no |
Call Number |
Kahl:17 |
Serial |
1218 |
Permanent link to this record |
|
|
|
Author |
Klapwijk, T. M.; Semenov, A. V. |
Title |
Engineering physics of superconducting hot-electron bolometer mixers |
Type |
Journal Article |
Year |
2017 |
Publication |
IEEE Trans. THz Sci. Technol. |
Abbreviated Journal |
IEEE Trans. THz Sci. Technol. |
Volume |
7 |
Issue |
6 |
Pages |
627-648 |
Keywords |
HEB mixers |
Abstract |
Superconducting hot-electron bolometers are presently the best performing mixing devices for the frequency range beyond 1.2 THz, where good-quality superconductor-insulator-superconductor devices do not exist. Their physical appearance is very simple: an antenna consisting of a normal metal, sometimes a normal-metal-superconductor bilayer, connected to a thin film of a narrow short superconductor with a high resistivity in the normal state. The device is brought into an optimal operating regime by applying a dc current and a certain amount of local-oscillator power. Despite this technological simplicity, its operation has found to be controlled by many different aspects of superconductivity, all occurring simultaneously. A core ingredient is the understanding that there are two sources of resistance in a superconductor: a charge-conversion resistance occurring at a normal-metal-superconductor interface and a resistance due to time-dependent changes of the superconducting phase. The latter is responsible for the actual mixing process in a nonuniform superconducting environment set up by the bias conditions and the geometry. The present understanding indicates that further improvement needs to be found in the use of other materials with a faster energy relaxation rate. Meanwhile, several empirical parameters have become physically meaningful indicators of the devices, which will facilitate the technological developments. |
Address |
|
Corporate Author |
|
Thesis |
|
Publisher |
|
Place of Publication |
|
Editor |
|
Language |
|
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
2156-342X |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
|
Approved |
no |
Call Number |
|
Serial |
1292 |
Permanent link to this record |
|
|
|
Author |
Korneev, A.; Kovalyuk, V.; Ferrari, S.; Kahl, O.; Pernice, W.; An, P.; Golikov, A.; Zubkova, E.; Goltsman, G. |
Title |
Superconducting Single-Photon Detectors for Integrated Nanophotonics Circuits |
Type |
Conference Article |
Year |
2017 |
Publication |
16th ISEC |
Abbreviated Journal |
16th ISEC |
Volume |
|
Issue |
|
Pages |
1-3 |
Keywords |
SSPD, SNSPD |
Abstract |
We present an overview of our recent achievements in integration of superconducting nanowire single-photon detectors SNSPD with dielectric optical waveguides. We are able to produce complex nanophotonics integrated circuits containing optical elements and photon detector on single chip thus producing a compact integrated platform for quantum optics applications. |
Address |
|
Corporate Author |
|
Thesis |
|
Publisher |
|
Place of Publication |
|
Editor |
|
Language |
|
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
|
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
|
Approved |
no |
Call Number |
8314200 |
Serial |
1200 |
Permanent link to this record |
|
|
|
Author |
Korneev, A.; Semenov, A.; Vodolazov, D.; Gol’tsman, G. N.; Sobolewski, R. |
Title |
Physics and operation of superconducting single-photon devices |
Type |
Book Chapter |
Year |
2017 |
Publication |
Superconductors at the Nanoscale |
Abbreviated Journal |
|
Volume |
|
Issue |
|
Pages |
279-308 |
Keywords |
|
Abstract |
|
Address |
|
Corporate Author |
|
Thesis |
|
Publisher |
De Gruyter |
Place of Publication |
|
Editor |
Wördenweber, R.; Moshchalkov, V.; Bending, S.; Tafuri, F. |
Language |
|
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
|
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
|
Approved |
no |
Call Number |
|
Serial |
1326 |
Permanent link to this record |
|
|
|
Author |
Korneeva, Y.; Florya, I.; Vdovichev, S.; Moshkova, M.; Simonov, N.; Kaurova, N.; Korneev, A.; Goltsman, G. |
Title |
Comparison of hot spot formation in nbn and mon thin superconducting films after photon absorption |
Type |
Journal Article |
Year |
2017 |
Publication |
IEEE Trans. Appl. Supercond. |
Abbreviated Journal |
IEEE Trans. Appl. Supercond. |
Volume |
27 |
Issue |
4 |
Pages |
1-4 |
Keywords |
MoNx SSPD |
Abstract |
In superconducting single-photon detectors (SSPD), the efficiency of local suppression of superconductivity and hotspot formation is controlled by diffusivity and electron-phonon interaction time. Here, we selected a material, 3.6-nm-thick MoNx film, which features diffusivity close to those of NbN traditionally used for SSPD fabrication, but with electron-phonon interaction time an order of magnitude larger. In MoN ∞ detectors, we study the dependence of detection efficiency on bias current, photon energy, and strip width, and compare it with NbN SSPD. We observe nonlinear current-energy dependence in MoNx SSPD and more pronounced plateaus in dependences of detection efficiency on bias current, which we attribute to longer electron-phonon interaction time. |
Address |
|
Corporate Author |
|
Thesis |
|
Publisher |
|
Place of Publication |
|
Editor |
|
Language |
|
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
1051-8223 |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
|
Approved |
no |
Call Number |
|
Serial |
1325 |
Permanent link to this record |