Records |
Author |
Trifonov, A.; Tong, C.-Y. E.; Grimes, P.; Lobanov, Y.; Kaurova, N.; Blundell, R.; Goltsman, G. |
Title |
Development of a silicon membrane-based multipixel hot electron bolometer receiver |
Type |
Journal Article |
Year |
2017 |
Publication |
IEEE Trans. Appl. Supercond. |
Abbreviated Journal |
IEEE Trans. Appl. Supercond. |
Volume |
27 |
Issue |
4 |
Pages |
1-5 |
Keywords |
Multi-pixel, NbN HEB, silicon-on-insulator, horn array |
Abstract |
We report on the development of a multipixel hot electron bolometer (HEB) receiver fabricated using silicon membrane technology. The receiver comprises a 2 × 2 array of four HEB mixers, fabricated on a single chip. The HEB mixer chip is based on a superconducting NbN thin-film deposited on top of the silicon-on-insulator (SOI) substrate. The thicknesses of the device layer and handling layer of the SOI substrate are 20 and 300 μm, respectively. The thickness of the device layer is chosen such that it corresponds to a quarter-wave in silicon at 1.35 THz. The HEB mixer is integrated with a bow-tie antenna structure, in turn designed for coupling to a circular waveguide, fed by a monolithic drilled smooth-walled horn array. |
Address |
|
Corporate Author |
|
Thesis |
|
Publisher |
|
Place of Publication |
|
Editor |
|
Language |
|
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
1051-8223 |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
|
Approved |
no |
Call Number |
|
Serial |
1324 |
Permanent link to this record |
|
|
|
Author |
Trifonov, A.; Tong, C.-Y. E.; Lobanov, Y.; Kaurova, N.; Blundell, R.; Goltsman, G. |
Title |
Photon absorption near the gap frequency in a hot electron bolometer |
Type |
Journal Article |
Year |
2017 |
Publication |
IEEE Trans. Appl. Supercond. |
Abbreviated Journal |
IEEE Trans. Appl. Supercond. |
Volume |
27 |
Issue |
4 |
Pages |
1-4 |
Keywords |
NBN HEB mixer |
Abstract |
The superconducting energy gap is a fundamental characteristic of a superconducting film, which, together with the applied pump power and the biasing setup, defines the instantaneous resistive state of the Hot Electron Bolometer (HEB) mixer at any given bias point on the I-V curve. In this paper we report on a series of experiments, in which we subjected the HEB to radiation over a wide frequency range along with parallel microwave injection. We have observed three distinct regimes of operation of the HEB, depending on whether the radiation is above the gap frequency, far below it or close to it. These regimes are driven by the different patterns of photon absorption. The experiments have allowed us to derive the approximate gap frequency of the device under test as about 585 GHz. Microwave injection was used to probe the HEB impedance. Spontaneous switching between the superconducting (low resistive) state and a quasi-normal (high resistive) state was observed. The switching pattern depends on the particular regime of HEB operation and can assume a random pattern at pump frequencies below the gap to a regular relaxation oscillation running at a few MHz when pumped above the gap. |
Address |
|
Corporate Author |
|
Thesis |
|
Publisher |
|
Place of Publication |
|
Editor |
|
Language |
|
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
1558-2515 |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
|
Approved |
no |
Call Number |
|
Serial |
1331 |
Permanent link to this record |
|
|
|
Author |
Vorobyov, V. V.; Kazakov, A. Y.; Soshenko, V. V.; Korneev, A. A.; Shalaginov, M. Y.; Bolshedvorskii, S. V.; Sorokin, V. N.; Divochiy, A. V.; Vakhtomin, Y. B.; Smirnov, K. V.; Voronov, B. M.; Shalaev, V. M.; Akimov, A. V.; Goltsman, G. N. |
Title |
Superconducting detector for visible and near-infrared quantum emitters [Invited] |
Type |
Journal Article |
Year |
2017 |
Publication |
Opt. Mater. Express |
Abbreviated Journal |
Opt. Mater. Express |
Volume |
7 |
Issue |
2 |
Pages |
513-526 |
Keywords |
SSPD, SNSPD |
Abstract |
Further development of quantum emitter based communication and sensing applications intrinsically depends on the availability of robust single-photon detectors. Here, we demonstrate a new generation of superconducting single-photon detectors specifically optimized for the 500–1100 nm wavelength range, which overlaps with the emission spectrum of many interesting solid-state atom-like systems, such as nitrogen-vacancy and silicon-vacancy centers in diamond. The fabricated detectors have a wide dynamic range (up to 350 million counts per second), low dark count rate (down to 0.1 counts per second), excellent jitter (62 ps), and the possibility of on-chip integration with a quantum emitter. In addition to performance characterization, we tested the detectors in real experimental conditions involving nanodiamond nitrogen-vacancy emitters enhanced by a hyperbolic metamaterial. |
Address |
|
Corporate Author |
|
Thesis |
|
Publisher |
|
Place of Publication |
|
Editor |
|
Language |
|
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
2159-3930 |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
|
Approved |
no |
Call Number |
|
Serial |
1234 |
Permanent link to this record |
|
|
|
Author |
Wördenweber, Roger; Moshchalkov, Victor; Bending, Simon; Tafuri, Francesco (eds) |
Title |
Superconductors at the nanoscale. From basic research to applications |
Type |
Book Whole |
Year |
2017 |
Publication |
|
Abbreviated Journal |
|
Volume |
|
Issue |
|
Pages |
|
Keywords |
|
Abstract |
|
Address |
|
Corporate Author |
|
Thesis |
|
Publisher |
Walter de Gruyter GmbH |
Place of Publication |
Berlin/Boston |
Editor |
Wördenweber, Roger; Moshchalkov, Victor; Bending, Simon; Tafuri, Francesco |
Language |
|
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
|
ISBN |
978-3-11-045620-2 |
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
Page shift = 14 |
Approved |
no |
Call Number |
|
Serial |
1139 |
Permanent link to this record |
|
|
|
Author |
Zhang, J.; Verevkin, A.; Slysz, W.; Chulkova, G.; Korneev, A.; Lipatov, A.; Okunev, O.; Gol’tsman, G. N.; Sobolewski, Roman |
Title |
Time-resolved characterization of NbN superconducting single-photon optical detectors |
Type |
Conference Article |
Year |
2017 |
Publication |
Proc. SPIE |
Abbreviated Journal |
Proc. SPIE |
Volume |
10313 |
Issue |
|
Pages |
103130F (1 to 3) |
Keywords |
NbN SSPD, SNSPD |
Abstract |
NbN superconducting single-photon detectors (SSPDs) are very promising devices for their picosecond response time, high intrinsic quantum efficiency, and high signal-to-noise ratio within the radiation wavelength from ultraviolet to near infrared (0.4 gm to 3 gm) [1-3]. The single photon counting property of NbN SSPDs have been investigated thoroughly and a model of hotspot formation has been introduced to explain the physics of the photon- counting mechanism [4-6]. At high incident flux density (many-photon pulses), there are, of course, a large number of hotspots simultaneously formed in the superconducting stripe. If these hotspots overlap with each other across the width w of the stripe, a resistive barrier is formed instantly and a voltage signal can be generated. We assume here that the stripe thickness d is less than the electron diffusion length, so the hotspot region can be considered uniform. On the other hand, when the photon flux is so low that on average only one hotspot is formed across w at a given time, the formation of the resistive barrier will be realized only when the supercurrent at sidewalks surpasses the critical current (jr) of the superconducting stripe [1]. In the latter situation, the formation of the resistive barrier is associated with the phase-slip center (PSC) development. The effect of PSCs on the suppression of superconductivity in nanowires has been discussed very recently [8, 9] and is the subject of great interest. |
Address |
|
Corporate Author |
|
Thesis |
|
Publisher |
SPIE |
Place of Publication |
|
Editor |
Armitage, J. C. |
Language |
|
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
|
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
Opto-Canada: SPIE Regional Meeting on Optoelectronics, Photonics, and Imaging, 2002, Ottawa, Ontario, Canada |
Notes |
Downloaded from http://www2.ece.rochester.edu/projects/ufqp/PDF/2002/213NbNTimeOPTO_b.pdf This artcle was published in 2017 with only first author indicated (Zhang, J.). There were 8 more authors! |
Approved |
no |
Call Number |
|
Serial |
1750 |
Permanent link to this record |