Records |
Author |
Ferrari, S.; Kovalyuk, V.; Hartmann, W.; Vetter, A.; Kahl, O.; Lee, C.; Korneev, A.; Rockstuhl, C.; Gol'tsman, G.; Pernice, W. |
Title |
Hot-spot relaxation time current dependence in niobium nitride waveguide-integrated superconducting nanowire single-photon detectors |
Type |
Journal Article |
Year |
2017 |
Publication |
Opt. Express |
Abbreviated Journal |
Opt. Express |
Volume |
25 |
Issue |
8 |
Pages |
8739-8750 |
Keywords |
SSPD, SNSPD, photon counting; Infrared; Quantum detectors; Integrated optics; Multiphoton processes; Photon statistics |
Abstract |
We investigate how the bias current affects the hot-spot relaxation dynamics in niobium nitride. We use for this purpose a near-infrared pump-probe technique on a waveguide-integrated superconducting nanowire single-photon detector driven in the two-photon regime. We observe a strong increase in the picosecond relaxation time for higher bias currents. A minimum relaxation time of (22 +/- 1)ps is obtained when applying a bias current of 50% of the switching current at 1.7 K bath temperature. We also propose a practical approach to accurately estimate the photon detection regimes based on the reconstruction of the measured detector tomography at different bias currents and for different illumination conditions. |
Address |
|
Corporate Author |
|
Thesis |
|
Publisher |
|
Place of Publication |
|
Editor |
|
Language |
|
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
|
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
|
Approved |
no |
Call Number |
RPLAB @ kovalyuk @ |
Serial |
1118 |
Permanent link to this record |
|
|
|
Author |
Finkel, M.; Thierschmann, H.; Galatro, L.; Katan, A. J.; Thoen, D. J.; de Visser, P. J.; Spirito, M.; Klapwijk, T. M. |
Title |
Performance of THz components based on microstrip PECVD SiNx technology |
Type |
Journal Article |
Year |
2017 |
Publication |
IEEE Trans. THz Sci. Technol. |
Abbreviated Journal |
IEEE Trans. THz Sci. Technol. |
Volume |
7 |
Issue |
6 |
Pages |
765-771 |
Keywords |
transmission line measurements, power transmission lines, dielectrics, couplers, submillimeter wave circuits, coplanar waveguides, micromechanical devices |
Abstract |
We present a performance analysis of passive THz components based on Microstrip transmission lines with a 2-μmthin plasma-enhanced chemical vapor deposition grown silicon nitride (PECVD SiNX) dielectric layer. A set of thru-reflect-line calibration structures is used for basic transmission line characterizations. We obtain losses of 9 dB/mm at 300 GHz. Branchline hybrid couplers are realized that exhibit 2.5-dB insertion loss, 1-dB amplitude imbalance, and -26-dB isolation, in agreement with simulations. We use the measured center frequency to determine the dielectric constant of the PECVD SiN x , which yields 5.9. We estimate the wafer-to-wafer variations to be of the order of 1%. Directional couplers are presented which exhibit -12-dB transmission to the coupled port and -26 dB to the isolated port. For transmission lines with 5-μm-thin silicon nitride (SiN x ), we observe losses below 4 dB/mm. The thin SiN x dielectric membrane makes the THz components compatible with scanning probe microscopy cantilevers allowing the application of this technology in on-chip circuits of a THz near-field microscope. |
Address |
|
Corporate Author |
|
Thesis |
|
Publisher |
|
Place of Publication |
|
Editor |
|
Language |
|
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
2156-342X |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
|
Approved |
no |
Call Number |
|
Serial |
1294 |
Permanent link to this record |
|
|
|
Author |
Goltsman, G. |
Title |
Superconducting thin film as infrared heterodyne and direct detectors |
Type |
Conference Article |
Year |
2017 |
Publication |
16th ISEC |
Abbreviated Journal |
16th ISEC |
Volume |
|
Issue |
|
Pages |
1-3 |
Keywords |
optical waveguide SSPD, SNSPD |
Abstract |
We present our recent achievements in the development of superconducting nanowire single-photon detectors (SNSPDs) integrated with optical waveguides on a chip. We demonstrate both single-photon counting with up to 90% on-chip-quantum-efficiency (OCDE), and the heterodyne mixing with a close to the quantum limit sensitivity at the telecommunication wavelength using single device. |
Address |
|
Corporate Author |
|
Thesis |
|
Publisher |
|
Place of Publication |
|
Editor |
|
Language |
|
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
|
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
|
Approved |
no |
Call Number |
8314188 |
Serial |
1323 |
Permanent link to this record |
|
|
|
Author |
Goltsman, Gregory |
Title |
Superconducting thin film nanostructures as terahertz and infrared heterodyne and direct detectors |
Type |
Conference Article |
Year |
2017 |
Publication |
16th ISEC |
Abbreviated Journal |
16th ISEC |
Volume |
|
Issue |
|
Pages |
Th-I-QTE-03 (1 to 3) |
Keywords |
waveguide SSPD, SNSPD |
Abstract |
We present our recent achievements in the development of superconducting nanowire single-photon detectors (SNSPDs) integrated with optical waveguides on a chip. We demonstrate both single-photon counting with up to 90% on-chipquantum-efficiency (OCDE), and the heterodyne mixing with a close to the quantum limit sensitivity at the telecommunication wavelength using single device. |
Address |
|
Corporate Author |
|
Thesis |
|
Publisher |
|
Place of Publication |
|
Editor |
|
Language |
|
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
|
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
IEEE/CSC & ESAS Superconductivity News Forum |
Notes |
|
Approved |
no |
Call Number |
|
Serial |
1745 |
Permanent link to this record |
|
|
|
Author |
Kahl, O.; Ferrari, S.; Kovalyuk, V.; Vetter, A.; Lewes-Malandrakis, G.; Nebel, C.; Korneev, A.; Goltsman, G.; Pernice, W. |
Title |
Spectrally multiplexed single-photon detection with hybrid superconducting nanophotonic circuits |
Type |
Journal Article |
Year |
2017 |
Publication |
Optica |
Abbreviated Journal |
Optica |
Volume |
4 |
Issue |
5 |
Pages |
557-562 |
Keywords |
Waveguide integrated superconducting single-photon detectors; Nanophotonics and photonic crystals; Quantum detectors; Spectrometers and spectroscopic instrumentation |
Abstract |
The detection of individual photons by superconducting nanowire single-photon detectors is an inherently binary mechanism, revealing either their absence or presence while concealing their spectral information. For multicolor imaging techniques, such as single-photon spectroscopy, fluorescence resonance energy transfer microscopy, and fluorescence correlation spectroscopy, wavelength discrimination is essential and mandates spectral separation prior to detection. Here, we adopt an approach borrowed from quantum photonic integration to realize a compact and scalable waveguide-integrated single-photon spectrometer capable of parallel detection on multiple wavelength channels, with temporal resolution below 50 ps and dark count rates below 10 Hz at 80% of the devices' critical current. We demonstrate multidetector devices for telecommunication and visible wavelengths, and showcase their performance by imaging silicon vacancy color centers in diamond nanoclusters. The fully integrated hybrid superconducting nanophotonic circuits enable simultaneous spectroscopy and lifetime mapping for correlative imaging and provide the ingredients for quantum wavelength-division multiplexing on a chip. |
Address |
|
Corporate Author |
|
Thesis |
|
Publisher |
|
Place of Publication |
|
Editor |
|
Language |
|
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
|
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
|
Approved |
no |
Call Number |
RPLAB @ kovalyuk @ |
Serial |
1119 |
Permanent link to this record |