Home | << 1 2 3 4 5 6 7 8 9 >> |
![]() |
Records | |||||
---|---|---|---|---|---|
Author | Lobanov, Y. V.; Shcherbatenko, M. L.; Semenov, A. V.; Kovalyuk, V. V.; Korneev, A. A.; Goltsman, G. N.; Vinogradov, E. A.; Naumov, A. V.; Gladush, M. G.; Karimullin, K. R. | ||||
Title | Heterodyne spectroscopy with superconducting single-photon detector | Type | Conference Article | ||
Year | 2017 | Publication | EPJ Web Conf. | Abbreviated Journal | EPJ Web Conf. |
Volume ![]() |
132 | Issue | Pages | 01005 | |
Keywords | SSPD mixer, SNSPD | ||||
Abstract | We demonstrate successful operation of a Superconducting Single Photon Detector (SSPD) as the core element in a heterodyne receiver. Irradiating the SSPD by both a local oscillator power and signal power simultaneously, we observed beat signal at the intermediate frequency of a few MHz. Gain bandwidth was found to coincide with the detector single pulse width, where the latter depends on the detector kinetic inductance, determined by the superconducting nanowire length. | ||||
Address | |||||
Corporate Author | Thesis | ||||
Publisher | Place of Publication | Editor | |||
Language | Summary Language | Original Title | |||
Series Editor | Series Title | Abbreviated Series Title | |||
Series Volume | Series Issue | Edition | |||
ISSN | 2100-014X | ISBN | Medium | ||
Area | Expedition | Conference | |||
Notes | Approved | no | |||
Call Number | Serial | 1205 | |||
Permanent link to this record | |||||
Author | Elezov, M. S.; Ozhegov, R. V.; Goltsman, G. N.; Makarov, V. | ||||
Title | Development of the experimental setup for investigation of latching of superconducting single-photon detector caused by blinding attack on the quantum key distribution system | Type | Conference Article | ||
Year | 2017 | Publication | EPJ Web of Conferences | Abbreviated Journal | EPJ Web of Conferences |
Volume ![]() |
132 | Issue | 2 | Pages | 2 |
Keywords | |||||
Abstract | Recently bright-light control of the SSPD has been demonstrated. This attack employed a “backdoor†in the detector biasing scheme. Under bright-light illumination, SSPD becomes resistive and remains “latched†in the resistive state even when the light is switched off. While the SSPD is latched, Eve can simulate SSPD single-photon response by sending strong light pulses, thus deceiving Bob. We developed the experimental setup for investigation of a dependence on latching threshold of SSPD on optical pulse length and peak power. By knowing latching threshold it is possible to understand essential requirements for development countermeasures against blinding attack on quantum key distribution system with SSPDs. |
||||
Address | |||||
Corporate Author | Thesis | ||||
Publisher | Place of Publication | Editor | |||
Language | Summary Language | Original Title | |||
Series Editor | Series Title | Abbreviated Series Title | |||
Series Volume | Series Issue | Edition | |||
ISSN | ISBN | Medium | |||
Area | Expedition | Conference | |||
Notes | Approved | no | |||
Call Number | RPLAB @ kovalyuk @ | Serial | 1116 | ||
Permanent link to this record | |||||
Author | Elezov, M. S.; Ozhegov, R. V.; Goltsman, G. N.; Makarov, V.; Vinogradov, E. A.; Naumov, A. V.; Gladush, M. G.; Karimullin, K. R. | ||||
Title | Development of the experimental setup for investigation of latching of superconducting single-photon detector caused by blinding attack on the quantum key distribution system | Type | Conference Article | ||
Year | 2017 | Publication | EPJ Web Conf. | Abbreviated Journal | EPJ Web Conf. |
Volume ![]() |
132 | Issue | Pages | 01004 (1 to 2) | |
Keywords | QKD, SSPD, SNSPD | ||||
Abstract | Recently bright-light control of the SSPD has been demonstrated. This attack employed a “backdoor” in the detector biasing scheme. Under bright-light illumination, SSPD becomes resistive and remains “latched” in the resistive state even when the light is switched off. While the SSPD is latched, Eve can simulate SSPD single-photon response by sending strong light pulses, thus deceiving Bob. We developed the experimental setup for investigation of a dependence on latching threshold of SSPD on optical pulse length and peak power. By knowing latching threshold it is possible to understand essential requirements for development countermeasures against blinding attack on quantum key distribution system with SSPDs. | ||||
Address | |||||
Corporate Author | Thesis | ||||
Publisher | Place of Publication | Editor | |||
Language | Summary Language | Original Title | |||
Series Editor | Series Title | Abbreviated Series Title | |||
Series Volume | Series Issue | Edition | |||
ISSN | 2100-014X | ISBN | Medium | ||
Area | Expedition | Conference | |||
Notes | Approved | no | |||
Call Number | Serial | 1327 | |||
Permanent link to this record | |||||
Author | Anfertev, V.; Vaks, V.; Revin, L.; Pentin, I.; Tretyakov, I.; Goltsman, G.; Vinogradov, E. A.; Naumov, A. V.; Gladush, M. G.; Karimullin, K. R. | ||||
Title | High resolution THz gas spectrometer based on semiconductor and superconductor devices | Type | Conference Article | ||
Year | 2017 | Publication | EPJ Web Conf. | Abbreviated Journal | EPJ Web Conf. |
Volume ![]() |
132 | Issue | Pages | 02001 (1 to 2) | |
Keywords | NbN HEB mixers, detectors, THz spectroscopy | ||||
Abstract | The high resolution THz gas spectrometer consists of a synthesizer based on Gunn generator with a semiconductor superlattice frequency multiplier as a radiation source, and an NbN hot electron bolometer in a direct detection mode as a THz radiation receiver was presented. The possibility of application of a quantum cascade laser as a local oscillator for a heterodyne receiver which is based on an NbN hot electron bolometer mixer is shown. The ways for further developing of the THz spectroscopy were outlined. | ||||
Address | |||||
Corporate Author | Thesis | ||||
Publisher | Place of Publication | Editor | |||
Language | Summary Language | Original Title | |||
Series Editor | Series Title | Abbreviated Series Title | |||
Series Volume | Series Issue | Edition | |||
ISSN | 2100-014X | ISBN | Medium | ||
Area | Expedition | Conference | |||
Notes | Approved | no | |||
Call Number | Serial | 1328 | |||
Permanent link to this record | |||||
Author | Seliverstov, S. V.; Anfertyev, V. A.; Tretyakov, I. V.; Ozheredov, I. A.; Solyankin, P. M.; Revin, L. S.; Vaks, V. L.; Rusova, A. A.; Goltsman, G. N.; Shkurinov, A. P. | ||||
Title | Terahertz heterodyne receiver with an electron-heating mixer and a heterodyne based on the quantum-cascade laser | Type | Journal Article | ||
Year | 2017 | Publication | Radiophys. Quant. Electron. | Abbreviated Journal | Radiophys. Quant. Electron. |
Volume ![]() |
60 | Issue | 7 | Pages | 518-524 |
Keywords | NbN HEB mixer, QCL | ||||
Abstract | We study characteristics of the laboratory prototype of a terahertz heterodyne receiver with an electron-heating mixer and a heterodyne based on the quantum-cascade laser. The results obtained demonstrate the possibility to use this receiver as a basis for creation of a high-sensitivity terahertz spectrometer, which can be used in many basic and practical applications. A significant advantage of this receiver will be the possibility of placing the mixer and heterodyne in the same cryostat, which will reduce the device dimensions considerably. The obtained experimental results are analyzed, and methods of optimizing the parameters of the receiver are proposed. | ||||
Address | |||||
Corporate Author | Thesis | ||||
Publisher | Place of Publication | Editor | |||
Language | Summary Language | Original Title | |||
Series Editor | Series Title | Abbreviated Series Title | |||
Series Volume | Series Issue | Edition | |||
ISSN | 0033-8443 | ISBN | Medium | ||
Area | Expedition | Conference | |||
Notes | Approved | no | |||
Call Number | Serial | 1322 | |||
Permanent link to this record |