Records |
Author |
Chuprina, I. N.; An, P. P.; Zubkova, E. G.; Kovalyuk, V. V.; Kalachev, A. A.; Gol'tsman, G. N. |
Title |
Optimisation of spontaneous four-wave mixing in a ring microcavity |
Type |
Conference Article |
Year  |
2017 |
Publication |
J. Phys.: Conf. Ser. |
Abbreviated Journal |
J. Phys.: Conf. Ser. |
Volume |
47 |
Issue |
10 |
Pages |
887-891 |
Keywords |
ring microcavity |
Abstract |
Abstract. A theory of spontaneous four-wave mixing in a ring microcavity is developed. The rate of emission of biphotons for pulsed and monochromatic pumping with allowance for the disper- sion of group velocities is analytically calculated. In the first case, pulses in the form of an increasing exponential are considered, which are optimal for excitation of an individual resonator mode. The behaviour of the group velocity dispersion as a function of the width and height of the waveguide is studied for a specific case of a ring microcavity made of silicon nitride. The results of the numeri- cal calculation are in good agreement with the experimental data. The ring microcavity is made of two types of waveguides: com- pletely etched and half etched. It is found that the latter allow for better control over the parameters in the manufacturing process, making them more predictable. |
Address |
|
Corporate Author |
|
Thesis |
|
Publisher |
|
Place of Publication |
|
Editor |
|
Language |
|
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
|
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
|
Approved |
no |
Call Number |
RPLAB @ kovalyuk @ |
Serial |
1142 |
Permanent link to this record |
|
|
|
Author |
Seliverstov, Sergey V.; Rusova, Anastasia A.; Kaurova, Natalya S.; Voronov, Boris M.; Goltsman, Gregory N. |
Title |
AC-biased superconducting NbN hot-electron bolometer for frequency-domain multiplexing |
Type |
Conference Article |
Year  |
2017 |
Publication |
Proc. 28th Int. Symp. Space Terahertz Technol. |
Abbreviated Journal |
Proc. 28th Int. Symp. Space Terahertz Technol. |
Volume |
|
Issue |
|
Pages |
120-122 |
Keywords |
NbN HEB mixer |
Abstract |
We present the results of characterization of fast and sensitive superconducting antenna-coupled THz direct detector based on NbN hot-electron bolometer (HEB) with AC-bias. We discuss the possibility of implementation of the AC-bias for design the readout system from the multi-element arrays of HEBs using standard technique of frequency-domain multiplexing. We demonstrate experimentally that this approach does not lead to significant deterioration of the HEB sensitivity compared with the value obtained for the same detector with DC- bias. Results of a numerical calculations of the HEB responsivity at AC-bias are in a good agreement with the experiment. |
Address |
|
Corporate Author |
|
Thesis |
|
Publisher |
|
Place of Publication |
|
Editor |
|
Language |
|
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
|
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
|
Approved |
no |
Call Number |
|
Serial |
1174 |
Permanent link to this record |
|
|
|
Author |
Antipov, S.; Trifonov, A.; Krause, S.; Meledin, D.; Desmaris, V.; Belitsky, V.; Gol’tsman, G. |
Title |
Gain bandwidth of NbN HEB mixers on GaN buffer layer operating at 2 THz local oscillator frequency |
Type |
Conference Article |
Year  |
2017 |
Publication |
Proc. 28th Int. Symp. Space Terahertz Technol. |
Abbreviated Journal |
Proc. 28th Int. Symp. Space Terahertz Technol. |
Volume |
|
Issue |
|
Pages |
147-148 |
Keywords |
NbN HEB mixers, GaN buffer-layer, IF bandwidth |
Abstract |
In this paper, we present IF bandwidth measurement results of NbN HEB mixers, which are employing NbN thin films grown on a GaN buffer-layer. The HEB mixers were operated in the heterodyne regime at a bath temperature of approximately 4.5 K and with a local oscillator operating at a frequency of 2 THz. A quantum cascade laser served as the local oscillator and a reference synthesizer based on a BWO generator (130-160 GHz) and a semiconductor superlattice (SSL) frequency multiplier was used as a signal source. By changing the LO frequency it was possible to record the IF response or gain bandwidth of the HEB with a spectrum analyzer at the operation point, which yielded lowest noise temperature. The gain bandwidth that was recorded in the heterodyne regime at 2 THz amounts to approximately 5 GHz and coincides well with a measurement that has been performed at elevated bath temperatures and lower LO frequency of 140 GHz. These findings strongly support that by using a GaN buffer-layer the phonon escape time of NbN HEBs can be significantly lower as compared to e.g. Si substrate, thus, providing higher gain bandwidth. |
Address |
|
Corporate Author |
|
Thesis |
|
Publisher |
|
Place of Publication |
|
Editor |
|
Language |
|
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
|
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
|
Approved |
no |
Call Number |
|
Serial |
1175 |
Permanent link to this record |
|
|
|
Author |
Kahl, O.; Ferrari, S.; Kovalyuk, V.; Vetter, A.; Lewes-Malandrakis, G.; Nebel, C.; Korneev, A.; Goltsman, G.; Pernice, W. |
Title |
Spectrally multiplexed single-photon detection with hybrid superconducting nanophotonic circuits: supplementary material |
Type |
Miscellaneous |
Year  |
2017 |
Publication |
Optica |
Abbreviated Journal |
|
Volume |
|
Issue |
|
Pages |
1-9 |
Keywords |
Quantum detectors; Spectrometers and spectroscopic instrumentation; Nanophotonics and photonic crystals; Fluorescence correlation spectroscopy; Fluorescence resonance energy transfer; Fluorescence spectroscopy; Imaging techniques; Optical components; Quantum key distribution |
Abstract |
This document provides supplementary information to “Spectrally multiplexed single-photon detection with hybrid superconducting nanophotonic circuits", DOI:10.1364/optica.4.000557. Here we detail the on-chip spectrometer design, its characterization and the experimental setup we used. In addition, we present a detailed report concerning the characterization of the superconducting nanowire single photon detectors. In the final sections, we describe sample preparation and characterization of the nanodiamonds containing silicon vacancy color centers. |
Address |
|
Corporate Author |
|
Thesis |
|
Publisher |
Osa |
Place of Publication |
|
Editor |
|
Language |
|
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
|
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
|
Approved |
no |
Call Number |
Kahl:17 |
Serial |
1218 |
Permanent link to this record |
|
|
|
Author |
Zolotov, P. I.; Divochiy, A. V.; Vakhtomin, Y. B.; Morozov, P. V.; Seleznev, V. A.; Smirnov, K. V. |
Title |
Development of high-effective superconducting single-photon detectors aimed for mid-IR spectrum range |
Type |
Conference Article |
Year  |
2017 |
Publication |
J. Phys.: Conf. Ser. |
Abbreviated Journal |
J. Phys.: Conf. Ser. |
Volume |
917 |
Issue |
|
Pages |
062037 |
Keywords |
NbN SSPD, SNSPD |
Abstract |
We report on development of superconducting single-photon detectors (SSPD) with high intrinsic quantum efficiency in the wavelength range 1.31 – 3.3 μm. By optimization of the NbN film thickness and its compound, we managed to improve detection efficiency of the detectors in the range up to 3.3 μm. Optimized devices showed intrinsic quantum efficiencies as high as 10% at mid-IR range. |
Address |
|
Corporate Author |
|
Thesis |
|
Publisher |
|
Place of Publication |
|
Editor |
|
Language |
|
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
1742-6588 |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
|
Approved |
no |
Call Number |
|
Serial |
1233 |
Permanent link to this record |