Home | << 1 2 3 4 5 6 7 8 9 >> |
![]() |
Records | |||||
---|---|---|---|---|---|
Author | Klapwijk, T. M.; Semenov, A. V. | ||||
Title | Engineering physics of superconducting hot-electron bolometer mixers | Type | Journal Article | ||
Year ![]() |
2017 | Publication | IEEE Trans. THz Sci. Technol. | Abbreviated Journal | IEEE Trans. THz Sci. Technol. |
Volume | 7 | Issue | 6 | Pages | 627-648 |
Keywords | HEB mixers | ||||
Abstract | Superconducting hot-electron bolometers are presently the best performing mixing devices for the frequency range beyond 1.2 THz, where good-quality superconductor-insulator-superconductor devices do not exist. Their physical appearance is very simple: an antenna consisting of a normal metal, sometimes a normal-metal-superconductor bilayer, connected to a thin film of a narrow short superconductor with a high resistivity in the normal state. The device is brought into an optimal operating regime by applying a dc current and a certain amount of local-oscillator power. Despite this technological simplicity, its operation has found to be controlled by many different aspects of superconductivity, all occurring simultaneously. A core ingredient is the understanding that there are two sources of resistance in a superconductor: a charge-conversion resistance occurring at a normal-metal-superconductor interface and a resistance due to time-dependent changes of the superconducting phase. The latter is responsible for the actual mixing process in a nonuniform superconducting environment set up by the bias conditions and the geometry. The present understanding indicates that further improvement needs to be found in the use of other materials with a faster energy relaxation rate. Meanwhile, several empirical parameters have become physically meaningful indicators of the devices, which will facilitate the technological developments. | ||||
Address | |||||
Corporate Author | Thesis | ||||
Publisher | Place of Publication | Editor | |||
Language | Summary Language | Original Title | |||
Series Editor | Series Title | Abbreviated Series Title | |||
Series Volume | Series Issue | Edition | |||
ISSN | 2156-342X | ISBN | Medium | ||
Area | Expedition | Conference | |||
Notes | Approved | no | |||
Call Number | Serial | 1292 | |||
Permanent link to this record | |||||
Author | Lobanov, Y. V.; Shcherbatenko, M. L.; Semenov, A. V.; Kovalyuk, V. V.; Korneev, A. A.; Goltsman, G. N.; Vinogradov, E. A.; Naumov, A. V.; Gladush, M. G.; Karimullin, K. R. | ||||
Title | Heterodyne spectroscopy with superconducting single-photon detector | Type | Conference Article | ||
Year ![]() |
2017 | Publication | EPJ Web Conf. | Abbreviated Journal | EPJ Web Conf. |
Volume | 132 | Issue | Pages | 01005 | |
Keywords | SSPD mixer, SNSPD | ||||
Abstract | We demonstrate successful operation of a Superconducting Single Photon Detector (SSPD) as the core element in a heterodyne receiver. Irradiating the SSPD by both a local oscillator power and signal power simultaneously, we observed beat signal at the intermediate frequency of a few MHz. Gain bandwidth was found to coincide with the detector single pulse width, where the latter depends on the detector kinetic inductance, determined by the superconducting nanowire length. | ||||
Address | |||||
Corporate Author | Thesis | ||||
Publisher | Place of Publication | Editor | |||
Language | Summary Language | Original Title | |||
Series Editor | Series Title | Abbreviated Series Title | |||
Series Volume | Series Issue | Edition | |||
ISSN | 2100-014X | ISBN | Medium | ||
Area | Expedition | Conference | |||
Notes | Approved | no | |||
Call Number | Serial | 1205 | |||
Permanent link to this record | |||||
Author | Korneeva, Yuliya; Florya, Irina; Vdovichev, Sergey; Moshkova, Mariya; Simonov, Nikita; Kaurova, Natalia; Korneev, Alexander; Goltsman, Gregory | ||||
Title | Comparison of hot-spot formation in NbN and MoN thin superconducting films after photon absorption | Type | Conference Article | ||
Year ![]() |
2017 | Publication | IEEE Transactions on Applied Superconductivity | Abbreviated Journal | IEEE Transactions on Applied Superconductiv |
Volume | 27 | Issue | 4 | Pages | 5 |
Keywords | Thin film devices, Superconducitng photoncounting devices, Nanowire single-photon detectors | ||||
Abstract | In superconducting single-photon detectors SSPD the efficiency of local suppression of superconductivity and hotspot formation is controlled by diffusivity and electron-phonon interaction time. Here we selected a material, 3.6-nm-thick MoNx film, which features diffusivity close to those of NbN traditionally used for SSPD fabrication, but with electron-phonon interaction time an order of magnitude larger. In MoNx detectors we study the dependence of detection efficiency on bias current, photon energy, and strip width and compare it with NbN SSPD. We observe non-linear current-energy dependence in MoNx SSPD and more pronounced plateaus in dependences of detection efficiency on bias current which we attribute to longer electronphonon interaction time. |
||||
Address | |||||
Corporate Author | Thesis | ||||
Publisher | Place of Publication | Editor | |||
Language | Summary Language | Original Title | |||
Series Editor | Series Title | Abbreviated Series Title | |||
Series Volume | Series Issue | Edition | |||
ISSN | ISBN | Medium | |||
Area | Expedition | Conference | |||
Notes | Approved | no | |||
Call Number | RPLAB @ kovalyuk @ | Serial | 1114 | ||
Permanent link to this record | |||||
Author | Titova, N.; Kardakova, A. I.; Tovpeko, N.; Ryabchun, S.; Mandal, S.; Morozov, D.; Klemencic, G. M.; Giblin, S. R.; Williams, O. A.; Goltsman, G. N.; Klapwijk, T. M. | ||||
Title | Slow electron–phonon cooling in superconducting diamond films | Type | Journal Article | ||
Year ![]() |
2017 | Publication | IEEE Trans. Appl. Supercond. | Abbreviated Journal | IEEE Trans. Appl. Supercond. |
Volume | 27 | Issue | 4 | Pages | 1-4 |
Keywords | superconducting diamond films, electron-phonon cooling | ||||
Abstract | We have measured the electron-phonon energy-relaxation time, τ eph , in superconducting boron-doped diamond films grown on silicon substrate by chemical vapor deposition. The observed electron-phonon cooling times vary from 160 ns at 2.70 K to 410 ns at 1.8 K following a T -2-dependence. The data are consistent with the values of τ eph previously reported for single-crystal boron-doped diamond films epitaxially grown on diamond substrate. Such a noticeable slow electron-phonon relaxation in boron-doped diamond, in combination with a high normal-state resistivity, confirms a potential of superconducting diamond for ultrasensitive superconducting bolometers. | ||||
Address | |||||
Corporate Author | Thesis | ||||
Publisher | Place of Publication | Editor | |||
Language | Summary Language | Original Title | |||
Series Editor | Series Title | Abbreviated Series Title | |||
Series Volume | Series Issue | Edition | |||
ISSN | 1051-8223 | ISBN | Medium | ||
Area | Expedition | Conference | |||
Notes | Approved | no | |||
Call Number | Serial | 1168 | |||
Permanent link to this record | |||||
Author | Elezov, M. S.; Ozhegov, R. V.; Goltsman, G. N.; Makarov, V. | ||||
Title | Development of the experimental setup for investigation of latching of superconducting single-photon detector caused by blinding attack on the quantum key distribution system | Type | Conference Article | ||
Year ![]() |
2017 | Publication | EPJ Web of Conferences | Abbreviated Journal | EPJ Web of Conferences |
Volume | 132 | Issue | 2 | Pages | 2 |
Keywords | |||||
Abstract | Recently bright-light control of the SSPD has been demonstrated. This attack employed a “backdoor†in the detector biasing scheme. Under bright-light illumination, SSPD becomes resistive and remains “latched†in the resistive state even when the light is switched off. While the SSPD is latched, Eve can simulate SSPD single-photon response by sending strong light pulses, thus deceiving Bob. We developed the experimental setup for investigation of a dependence on latching threshold of SSPD on optical pulse length and peak power. By knowing latching threshold it is possible to understand essential requirements for development countermeasures against blinding attack on quantum key distribution system with SSPDs. |
||||
Address | |||||
Corporate Author | Thesis | ||||
Publisher | Place of Publication | Editor | |||
Language | Summary Language | Original Title | |||
Series Editor | Series Title | Abbreviated Series Title | |||
Series Volume | Series Issue | Edition | |||
ISSN | ISBN | Medium | |||
Area | Expedition | Conference | |||
Notes | Approved | no | |||
Call Number | RPLAB @ kovalyuk @ | Serial | 1116 | ||
Permanent link to this record |