|   | 
Details
   web
Records
Author Райтович, А. А.; Пентин, И. В.; Золотов, Ф. И.; Селезнев, В. А.; Вахтомин, Ю. Б.; Смирнов, К. В.
Title Время энергетической релаксации электронов в сверхпроводниковых VN наноструктурах Type Conference Article
Year 2018 Publication Сборник трудов 13 Всероссийской конференции молодых ученых Abbreviated Journal
Volume Issue Pages 236-238
Keywords VN films
Abstract
Address Саратовский филиал ИРЭ им. В.А. Котельникова РАН
Corporate Author Thesis
Publisher Техно-Декор Place of Publication Editor
Language Russian Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference Наноэлектроника, нанофотоника и нелинейная физика
Notes http://nnnph.ru/data/documents/Sborni-trudov-NNNF-2018.pdf Approved no
Call Number (up) Serial 1807
Permanent link to this record
 

 
Author Lobanov, Y. V.; Vakhtomin, Y. B.; Pentin, I. V.; Khabibullin, R. A.; Shchavruk, N. V.; Smirnov, K. V.; Silaev, A. A.
Title Characterization of the THz quantum cascade laser using fast superconducting hot electron bolometer Type Journal Article
Year 2018 Publication EPJ Web Conf. Abbreviated Journal EPJ Web Conf.
Volume 195 Issue Pages 04004 (1 to 2)
Keywords NbN HEB, QCL
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2100-014X ISBN Medium
Area Expedition Conference 3rd International Conference “Terahertz and Microwave Radiation: Generation, Detection and Applications” (TERA-2018)
Notes Approved no
Call Number (up) Serial 1808
Permanent link to this record
 

 
Author Sidorova, M.; Semenov, A.; Hübers, H.-W.; Kuzmin, A.; Doerner, S.; Ilin, K.; Siegel, M.; Charaev, I.; Vodolazov, D.
Title Timing jitter in photon detection by straight superconducting nanowires: Effect of magnetic field and photon flux Type Journal Article
Year 2018 Publication Phys. Rev. B Abbreviated Journal Phys. Rev. B
Volume 98 Issue 13 Pages 134504 (1 to 14)
Keywords SNSPD, NbN namowires
Abstract We studied the effects of the external magnetic field and photon flux on timing jitter in photon detection by straight superconducting NbN nanowires. At two wavelengths 800 and 1560 nm, statistical distribution in the appearance times of photon counts exhibits Gaussian shape at small times and an exponential tail at large times. The characteristic exponential time is larger for photons with smaller energy and increases with external magnetic field while variations in the Gaussian part of the distribution are less pronounced. Increasing photon flux drives the nanowire from the discrete quantum detection regime to the uniform bolometric regime that averages out fluctuations of the total number of nonequilibrium electrons created by the photon and drastically reduces jitter. The difference between standard deviations of Gaussian parts of distributions for these two regimes provides the measure for the strength of electron-number fluctuations; it increases with the photon energy. We show that the two-dimensional hot-spot detection model explains qualitatively the effect of magnetic field.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9950 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number (up) Serial 1842
Permanent link to this record
 

 
Author Fedorov, G.; Gayduchenko, I.; Titova, N.; Moskotin, M.; Obraztsova, E.; Rybin, M.; Goltsman, G.
Title Graphene-based lateral Schottky diodes for detecting terahertz radiation Type Conference Article
Year 2018 Publication Proc. Optical Sensing and Detection V Abbreviated Journal Proc. Optical Sensing and Detection V
Volume 10680 Issue Pages 30-39
Keywords graphene, terahertz radiation, detectors, Schottky diodes, carbon nanotubes, plasma waves
Abstract Demand for efficient terahertz radiation detectors resulted in intensive study of the carbon nanostructures as possible solution for that problem. In this work we investigate the response to sub-terahertz radiation of graphene field effect transistors of two configurations. The devices of the first type are based on single layer CVD graphene with asymmetric source and drain (vanadium and gold) contacts and operate as lateral Schottky diodes (LSD). The devices of the second type are made in so-called Dyakonov-Shur configuration in which the radiation is coupled through a spiral antenna to source and top electrodes. We show that at 300 K the LSD detector exhibit the room-temperature responsivity from R = 15 V/W at f= 129 GHz to R = 3 V/W at f = 450 GHz. The DS detector responsivity is markedly lower (2 V/W) and practically frequency independent in the investigated range. We find that at low temperatures (77K) the graphene lateral Schottky diodes responsivity rises with the increasing frequency of the incident sub-THz radiation. We interpret this result as a manifestation of a plasmonic effect in the devices with the relatively long plasmonic wavelengths. The obtained data allows for determination of the most promising directions of development of the technology of nanocarbon structures for the detection of THz radiation.
Address
Corporate Author Thesis
Publisher Spie Place of Publication Editor Berghmans, F.; Mignani, A.G.
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number (up) 10.1117/12.2307020 Serial 1306
Permanent link to this record
 

 
Author Fedder, H.; Oesterwind, S.; Wick, M.; Olbrich, F.; Michler, P.; Veigel, T.; Berroth, M.; Schlagmüller, M.
Title Characterization of electro-optical devices with low jitter single photon detectors – towards an optical sampling oscilloscope beyond 100 GHz Type Conference Article
Year 2018 Publication ECOC Abbreviated Journal
Volume Issue Pages 1-3
Keywords SSPD, SNSPD, SPAD
Abstract We showcase an optical random sampling scope that exploits single photon counting and apply it to characterize optical transceivers. We study single photon detectors with a jitter down to 40 ps. The method can be extended beyond 100 GHz.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number (up) 8535415 Serial 1198
Permanent link to this record