|   | 
Details
   web
Records
Author Bandurin, D. A.; Gayduchenko, I.; Cao, Y.; Moskotin, M.; Principi, A.; Grigorieva, I. V.; Goltsman, G.; Fedorov, G.; Svintsov, D.
Title Dual origin of room temperature sub-terahertz photoresponse in graphene field effect transistors Type Journal Article
Year 2018 Publication Appl. Phys. Lett. Abbreviated Journal Appl. Phys. Lett.
Volume 112 Issue 14 Pages 141101 (1 to 5)
Keywords graphene field effect transistors, FET
Abstract Graphene is considered as a promising platform for detectors of high-frequency radiation up to the terahertz (THz) range due to its superior electron mobility. Previously, it has been shown that graphene field effect transistors (FETs) exhibit room temperature broadband photoresponse to incoming THz radiation, thanks to the thermoelectric and/or plasma wave rectification. Both effects exhibit similar functional dependences on the gate voltage, and therefore, it was difficult to disentangle these contributions in previous studies. In this letter, we report on combined experimental and theoretical studies of sub-THz response in graphene field-effect transistors analyzed at different temperatures. This temperature-dependent study allowed us to reveal the role of the photo-thermoelectric effect, p-n junction rectification, and plasmonic rectification in the sub-THz photoresponse of graphene FETs.

D.A.B. acknowledges the Leverhulme Trust for financial support. The work of D.S. was supported by Grant No. 16-19-10557 of the Russian Scientific Foundation (theoretical model). G.F., I.G., M.M., and G.G. acknowledge the Russian Science Foundation [Grant No. 14-19-01308 (MIET, cryostat upgrade) and Grant No. 17-72-30036, (MSPU, photoresponse measurements), the Ministry of Education and Science of the Russian Federation (Contract No. 14.B25.31.0007 (device fabrication) and Task No. 3.7328.2017/LS (NEP analyses)] and the Russian Foundation for Basic Research [Grant No. 15-02-07841 (device design)]. The authors are grateful to Professor M. S. Shur for helpful discussions.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language (up) Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1309
Permanent link to this record
 

 
Author Florya, I. N.; Korneeva, Y. P.; Mikhailov, M. Y.; Devizenko, A. Y.; Korneev, A. A.; Goltsman, G. N.
Title Photon counting statistics of superconducting single-photon detectors made of a three-layer WSi film Type Journal Article
Year 2018 Publication Low Temp. Phys. Abbreviated Journal Low Temp. Phys.
Volume 44 Issue 3 Pages 221-225
Keywords WSi SSPD, SNSPD
Abstract Superconducting nanowire single-photon detectors (SNSPD) are used in quantum optics when record-breaking time resolution, high speed, and exceptionally low levels of dark counts (false readings) are required. Their detection efficiency is limited, however, by the absorption coefficient of the ultrathin superconducting film for the detected radiation. One possible way of increasing the detector absorption without limiting its broadband response is to make a detector in the form of several vertically stacked layers and connect them in parallel. For the first time we have studied single-photon detection in a multilayer structure consisting of three superconducting layers of amorphous tungsten silicide (WSi) separated by thin layers of amorphous silicon. Two operating modes of the detector are illustrated: an avalanche regime and an arm-trigger regime. A shift in these modes occurs at currents of ∼0.5–0.6 times the critical current of the detector.

This work was supported by technical task No. 88 for scientific research at the National Research University “Higher School of Economics,” Grant No. 14.V25.31.0007 from the Ministry of Education and Science of Russia, and the work of G. N. Goltsman was supported by task No. 3.7328.2017/VU of the Ministry of Education and Science of Russia.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language (up) Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1063-777X ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1310
Permanent link to this record
 

 
Author Baeva, E.; Sidorova, M.; Korneev, A.; Goltsman, G.
Title Precise measurement of the thermal conductivity of superconductor Type Conference Article
Year 2018 Publication Proc. AIP Conf. Abbreviated Journal Proc. AIP Conf.
Volume 1936 Issue 1 Pages 020003 (1 to 4)
Keywords NbN SSPD, SNSPD
Abstract Measuring the thermal properties such as the heat capacity provide information about intrinsic mechanisms operated inside. In general, the ratio between electron and phonon specific heat Ce/Cp shows how the absorbed energy shared between electron and phonon subsystems. In this work we make estimations for amplitude-modulated absorption of THz radiation technique for investigation of the ratio Ce/Cp in superconducting Niobium Nitride (NbN) at T = Tc. Our results indicates that experimentally the frequency of modulation has to be extra large to extract the quantity. We perform a new technique allowed to work at low frequency with accurately measurement of absorbed power.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language (up) Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number doi:10.1063/1.5025441 Serial 1311
Permanent link to this record
 

 
Author Korneeva, Y. P.; Vodolazov, D. Y.; Semenov, A. V.; Florya, I. N.; Simonov, N.; Baeva, E.; Korneev, A. A.; Goltsman, G. N.; Klapwijk, T. M.
Title Optical single photon detection in micron-scaled NbN bridges Type Miscellaneous
Year 2018 Publication arXiv Abbreviated Journal
Volume Issue Pages
Keywords SSPD
Abstract We demonstrate experimentally that single photon detection can be achieved in micron-wide NbN bridges, with widths ranging from 0.53 μm to 5.15 μm and for photon-wavelengths from 408 nm to 1550 nm. The microbridges are biased with a dc current close to the experimental critical current, which is estimated to be about 50 % of the theoretically expected depairing current. These results offer an alternative to the standard superconducting single-photon detectors (SSPDs), based on nanometer scale nanowires implemented in a long meandering structure. The results are consistent with improved theoretical modelling based on the theory of non-equilibrium superconductivity including the vortex-assisted mechanism of initial dissipation.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language (up) Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Duplicated as 1303 Approved no
Call Number Serial 1312
Permanent link to this record
 

 
Author Tretyakov, Ivan; Kaurova, N.; Voronov, B. M.; Goltsman, G. N.
Title About effect of the temperature operating conditions on the noise temperature and noise bandwidth of the terahertz range NbN hot-electron bolometers Type Abstract
Year 2018 Publication Proc. 29th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 29th Int. Symp. Space Terahertz Technol.
Volume Issue Pages 113
Keywords NbN HEB mixer
Abstract Results of an experimental study of the noise temperature (Tn) and noise bandwidth (NBW) of the superconductor NbN hot-electron bolometer (HEB) mixer as a function of its temperature (Tb) and NbN bridge length are presented. It was determined that the NBW of the mixer is significantly wider at temperatures close to the critical ones (Tc) than are values measured at 4.2 K. The NBW of the mixer measured at the heterodyne frequency of 2.5 THz at temperature Tb close to Tc was ~13 GHz, as compared with 6 GHz at Tb = 4.2 K. This experiment clearly demonstrates the limitation of the thermal flow from the NbN bridge at Tb ≪ Tc for mixers manufactured by the in situ technique. This limitation is close in its nature to the Andreev reflection on the superconductor/metal boundary. In this case, the noise temperature of the studied mixer increased from 1100 to 3800 K.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language (up) Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1313
Permanent link to this record