toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Matyushkin, Y.; Kaurova, N.; Voronov, B.; Goltsman, G.; Fedorov, G. url  doi
openurl 
  Title On chip carbon nanotube tunneling spectroscopy Type Journal Article
  Year 2020 Publication Fullerenes, Nanotubes and Carbon Nanostructures Abbreviated Journal  
  Volume 28 Issue 1 Pages 50-53  
  Keywords carbon nanotubes, CNT, scanning tunneling microscope, STM  
  Abstract We report an experimental study of the band structure of individual carbon nanotubes (SCNTs) based on investigation of the tunneling density of states, i.e. tunneling spectroscopy. A common approach to this task is to use a scanning tunneling microscope (STM). However, this approach has a number of drawbacks, to overcome which, we propose another method – tunneling spectroscopy of SCNTs on a chip using a tunneling contact. This method is simpler, cheaper and technologically advanced than the STM. Fabrication of a tunnel contact can be easily integrated into any technological route, therefore, a tunnel contact can be used, for example, as an additional tool in characterizing any devices based on individual CNTs. In this paper we demonstrate a simple technological procedure that results in fabrication of good-quality tunneling contacts to carbon nanotubes.  
  Address  
  Corporate Author Thesis  
  Publisher Taylor & Francis Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number doi:10.1080/1536383X.2019.1671365 Serial 1269  
Permanent link to this record
 

 
Author Matyushkin, Yakov; Fedorov, Georgy; Moskotin, Maksim; Danilov, Sergey; Ganichev, Sergey; Goltsman, Gregory url  openurl
  Title Gate-mediated helicity sensitive detectors of terahertz radiation with graphene-based field effect transistors Type Abstract
  Year 2020 Publication Graphene and 2dm Virt. Conf. Abbreviated Journal Graphene and 2DM Virt. Conf.  
  Volume Issue Pages  
  Keywords single layer graphene, SLG, CVD, plasmons, FET  
  Abstract Closing of the so-called terahertz gap results in an increased demand for optoelectronic devices operating in the frequency range from 0.1 to 10 THz. Active plasmonic in field effect devices based on high-mobility two-dimensional electron gas (2DEG) opens up opportunities for creation of on-chip spectrum [1] and polarization [2] analysers. Here we show that single layer graphene (SLG) grown using CVD method can be used for an all-electric helicity sensitive polarization broad analyser of THz radiation. Allourresults show plasmonic nature of response. Devices are made in a configuration ofa field-effect transistor (FET) with a graphene channel that has a length of 2 mkm and a width of 5.5 mkm. Response of opposite polarity to clockwise and anticlockwise polarized radiation is due to special antenna design (see Fig.1c) as follow works [2,3]. Our approaches can be extrapolated to other 2D materials and used as a tool to characterize plasmonic excitations in them. [1]Bandurin, D. A., etal.,Nature Communications, 9(1),(2018),1-8.[2]Drexler, C.,etal.,Journal of Applied Physics, 111(12),(2012),124504.[3]Gorbenko, I. V.,et al.,physica status solidi (RRL)–Rapid Research Letters, 13(3),(2019),1800464.  
  Address Grenoble, France  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) ISBN Medium  
  Area Expedition Conference Graphene and 2dm Virtual Conference & Expo  
  Notes Approved no  
  Call Number Serial 1743  
Permanent link to this record
 

 
Author Baeva, E. M.; Titova, N. A.; Kardakova, A. I.; Piatrusha, S. U.; Khrapai, V. S. url  doi
openurl 
  Title Universal bottleneck for thermal relaxation in disordered metallic films Type Journal Article
  Year 2020 Publication JETP Lett. Abbreviated Journal Jetp Lett.  
  Volume 111 Issue 2 Pages 104-108  
  Keywords NbN disordered metallic films, thermal relaxation  
  Abstract We study the heat relaxation in current biased metallic films in the regime of strong electron–phonon coupling. A thermal gradient in the direction normal to the film is predicted, with a spatial temperature profile determined by the temperature-dependent heat conduction. In the case of strong phonon scattering, the heat conduction occurs predominantly via the electronic system and the profile is parabolic. This regime leads to the linear dependence of the noise temperature as a function of bias voltage, in spite of the fact that all the dimensions of the film are large compared to the electron–phonon relaxation length. This is in stark contrast to the conventional scenario of relaxation limited by the electron–phonon scattering rate. A preliminary experimental study of a 200-nm-thick NbN film indicates the relevance of our model for materials used in superconducting nanowire single-photon detectors.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0021-3640 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1164  
Permanent link to this record
 

 
Author Rasulova, G. K.; Pentin, I. V.; Vakhtomin, Y. B.; Smirnov, K. V.; Khabibullin, R. A.; Klimov, E. A.; Klochkov, A. N.; Goltsman, G. N. url  doi
openurl 
  Title Pulsed terahertz radiation from a double-barrier resonant tunneling diode biased into self-oscillation regime Type Journal Article
  Year 2020 Publication J. Appl. Phys. Abbreviated Journal J. Appl. Phys.  
  Volume 128 Issue 22 Pages 224303 (1 to 11)  
  Keywords HEB, resonant tunneling diode, RTD  
  Abstract The study of the bolometer response to terahertz (THz) radiation from a double-barrier resonant tunneling diode (RTD) biased into the negative differential conductivity region of the I–V characteristic revealed that the RTD emits two pulses in a period of intrinsic self-oscillations of current. The bolometer pulse repetition rate is a multiple of the fundamental frequency of the intrinsic self-oscillations of current. The bolometer pulses are detected at two critical points with a distance between them being half or one-third of a period of the current self-oscillations. An analysis of the current self-oscillations and the bolometer response has shown that the THz photon emission is excited when the tunneling electrons are trapped in (the first pulse) and then released from (the second pulse) miniband states.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0021-8979 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1262  
Permanent link to this record
 

 
Author Ovchinnikov, O. V.; Perepelitsa, A. S.; Smirnov, M. S.; Latyshev, A. N.; Grevtseva, I. G.; Vasiliev, R. B.; Goltsman, G. N.; Vitukhnovsky, A. G. url  doi
openurl 
  Title Luminescence of colloidal Ag2S/ZnS core/shell quantum dots capped with thioglycolic acid Type Journal Article
  Year 2020 Publication J. Luminescence Abbreviated Journal J. Luminescence  
  Volume 220 Issue Pages 117008 (1 to 7)  
  Keywords Ag2S QD, quantum dots  
  Abstract The features of IR luminescence of colloidal AgS QDs passivated with thioglycolic acid (AgS/TGA) under the formation of AgS/ZnS/TGA core/shell QDs are considered. A 4.5-fold increase in the quantum yield of recombination IR luminescence within the band with a peak at 960 nm (1.29 eV), full width at half maximum of 250 nm (0.34 eV), and the Stokes shift with respect to the exciton absorption of 0.6 eV was found. The increase in the IR luminescence intensity of AgS/ZnS/TGA QDs is accompanied by an increase in the average luminescence lifetime from 2.9 ns to 14.3 ns, which is explained as “healing” of surface trap states during the formation of the ZnS shell. For the first time, the enhancement of the luminescence intensity photodegradation (hereinafter referred to as fatigue) was found during the formation of the AgS/ZnS/TGA core/shell QDs. The luminescence fatigue is irreversible. We conclude that the initial stage of photolysis of the AgS core QDs under laser irradiation plays a key role. Low-atomic photolytic clusters of silver formed on the AgS core QDs act as luminescence quenching centers and do not reveal structural transformations into AgS, provided that the clusters are not in contact with TGA.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0022-2313 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1267  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: