Korneev, A. A., Korneeva, Y. P., Mikhailov, M. Y., Pershin, Y. P., Semenov, A. V., Vodolazov, D. Y., et al. (2015). Characterization of MoSi superconducting single-photon detectors in the magnetic field. IEEE Trans. Appl. Supercond., 25(3), 2200504 (1 to 4).
Abstract: We investigate the response mechanism of nanowire superconducting single-photon detectors (SSPDs) made of amorphous MoxSi1-x. We study the dependence of photon count and dark count rates on bias current in magnetic fields up to 113 mT at 1.7 K temperature. The observed behavior of photon counts is similar to the one recently observed in NbN SSPDs. Our results show that the detecting mechanism of relatively high-energy photons does not involve the vortex penetration from the edges of the film, and on the contrary, the detecting mechanism of low-energy photons probably involves the vortex penetration from the film edges.
|
Seleznev, V. A., Tarkhov, M. A., Voronov, B. M., Milostnaya, I. I., Lyakhno, V. Y., Garbuz, A. S., et al. (2008). Deposition and characterization of few-nanometers-thick superconducting Mo-Re films. Supercond. Sci. Technol., 21(11), 115006 (1 to 6).
Abstract: We report on the fabrication and investigation of few-nanometers-thick superconducting molybdenum-rhenium (Mo-Re) films intended for use in nanowire single-photon superconducting detectors (SSPDs). Mo-Re films were deposited on sapphire substrates by DC magnetron sputtering of an Mo(60)-Re(40) alloy target in an atmosphere of argon. The films 2-10 nm thick had critical temperatures (Tc) from 5.6 to 9.7 K. HRTEM (high-resolution transmission electron microscopy) analysis showed that the films had a homogeneous structure. XPS (x-ray photoelectron spectroscopy) analysis showed the Mo to Re atom ratio to be 0.575/0.425, oxygen concentration to be 10%, and concentration of other elements to be 1%.
|