Danerud, M., Winkler, D., Zorin, M., Trifonov, V., Karasik, B., Gershenzon, E. M., et al. (1993). Picosecond detection of infrared radiation with YBa2Cu3O7-δ thin films. In J. R. Birch, & T. J. Parker (Eds.), Proc. SPIE (Vol. 2104, pp. 183–184). Spie.
Abstract: Picosecond nonequilibrium and slow bolometric responses from a patterned high-Tc superconducting (HTS) film due toinfrared radiation were investigated using both modulation and pulse techniques. Measurements at A, = 0.85 [tm andA, = 10.6 lim have shown a similar behaviour of the response vs modulation frequency f. The responsivity of the HTS filmbased detector at f ..- 0.6-1 GHz is estimated to be 10-2 – 10-1 V/W.
|
Lindgren, M., Zorin, M. A., Trifonov, V., Danerud, M., Winkler, D., Karasik, B. S., et al. (1994). Optical mixing in a patterned YBa2Cu3O7-δ thin film. Appl. Phys. Lett., 65(26), 3398–3400.
Abstract: Mixing of 1.56 µm infrared radiation from two lasers in a high quality YBa2Cu3O7-δ thin film, patterned to parallel strips, was demonstrated. A mixer bandwidth of 18 GHz, limited by the measurement system, was obtained. A model based on nonequilibrium electron heating gives a good fit to the data and predicts an intrinsic mixer bandwidth in excess of 100 GHz, operating in the whole infrared spectrum. Reduction of bolometric effects and ways to decrease the conversion loss of the mixer is discussed. The minimum conversion loss is expected to be ~10 dB.
|
Danerud, M., Winkler, D., Lindgren, M., Zorin, M., Trifonov, V., Karasik, B. S., et al. (1994). Nonequilibrium and bolometric photoresponse in patterned YBa2Cu3O7−δ thin films. J. Appl. Phys., 76(3), 1902–1909.
Abstract: Epitaxial laser deposited YBa2Cu3O7−δ films of ∼50 nm thickness were patterned into detectors consisting of ten parallel 1 μm wide strips in order to study nonequilibrium and bolometric effects. Typically, the patterned samples had critical temperatures around 86 K, transition widths around 2 K and critical current densities above 1×106A/cm2 at 77 K. Pulsed laser measurements at 0.8 μm wavelength (17 ps full width at half maximum) showed a ∼30 ps response, attributed to electron heating, followed by a slower bolometric decay. Amplitude modulation in the band fmod=100 kHz–10 GHz of a laser with wavelength λ=0.8 μm showed two different thermal relaxations in the photoresponse. Phonon escape from the film (∼3 ns) is the limiting process, followed by heat diffusion in the substrate. Similar relaxations were also seen for λ=10.6 μm. The photoresponse measurements were made with the film in the resistive state and extended into the normal state. These states were created by supercritical bias currents. Measurements between 75 and 95 K (i.e., from below to above Tc) showed that the photoresponse was proportional to dR/dT for fmod=1 MHz and 4 GHz. The fast response is limited by the electron‐phonon scattering time, estimated to 1.8 ps from experimental data. The responsivity both at 0.8 and 10.6 μm wavelength was ∼1.2 V/W at fmod=1 GHz and the noise equivalent power was calculated to 1.5×10−9 WHz−1/2 for the fast response.
|
Lindgren, M., Trifonov, V., Zorin, M., Danerud, M., Winkler, D., Karasik, B. S., et al. (1994). Transient resistive photoresponse of YBa2Cu3O7−δ films using low power 0.8 and 10.6 μm laser radiation. Appl. Phys. Lett., 64(22), 3036–3038.
Abstract: Thin YBa2Cu3O7−δ laser deposited films were patterned into devices consisting of ten parallel 1 μm wide strips. Nonequilibrium picosecond and bolometric photoresponses were studied by the use of 17 ps full width at half‐maximum laser pulses and amplitude modulated radiation from an AlGaAs laser up to 10 GHz and from a CO2 laser up to 1 GHz. The time and frequency domain measurements were in agreement. The fast response can be explained by electron heating. The use of low optical power and a sensitive measurement system excluded any nonlinear transient processes and kinetic inductance changes in the superconducting state. At 1 GHz modulation frequency, the responsivity was ∼1.2 V/W both for 0.8 and 10.6 μm wavelengths. The sensitivity of a fast and spectrally broadband infrared detector is discussed.
|
Karasik, B. S., Lindgren, M., Zorin, M. A., Danerud, M., Winkler, D., Trifonov, V. V., et al. (1994). Picosecond detection and broadband mixing of near-infrared radiation by YBaCuO films. In M. Nahum, & J. - C. Villegier (Eds.), Proc. SPIE (Vol. 2159, pp. 68–76). Spie.
Abstract: Nonequilibrium picosecond and bolometric responses of YBCO films 500 angstroms thick patterned into 20 X 20 micrometers 2 size structure to 17 ps laser pulses and modulated radiation of GaAs and CO2 lasers have been studied. The modulation frequencies up to 10 GHz for GaAs laser and up to 1 GHz for CO2 were attained. The use of small radiation power (1 – 10 mW/cm2 for cw radiation and 10 – 100 nJ/cm2 for pulse radiation) in combination with high sensitive read-out system made possible to avoid any non-linear transient processes caused by an overheating of sample above a critical temperature or S-N switching enhanced by an intense radiation. Responses due to the change of kinetic inductance were believed to be negligible. The only signals observed were caused by a small change of the film resistance either in the resistive state created by a bias current or in the normal state. The data obtained by means of pulse and modulation techniques are in agreement. The responsivity about 1 V/W was measured at 1 GHz modulation frequency both for 0.85 micrometers and 10.6 micrometers wavelengths. The sensitivity of high-Tc fast wideband infrared detector is discussed.
|