|
Trifonov, V. A., Karasik, B. S., Zorin, M. A., Gol'tsman, G. N., Gershenzon, E. M., Lindgren, M., et al. (1996). 9.6 μm wavelength mixing in a patterned YBa2Cu3O7-δ thin film. In Proc. 7th Int. Symp. Space Terahertz Technol. (pp. 337–348).
Abstract: Hot-electron bolometric (HEB) mixing of 9.6 gm infrared radiation from two lasers in high-quality YBa2Cu307_3 (YBCO) patterned thin film has been demonstrated. A heterodyne measurement showed an intermediate frequency (IF) bandwidth of 18 GHz, limited by our measurement system. An intrinsic limit of 100 GHz is predicted. Between 0.1 and 1 GHz intermediate frequency, temperature fluctuations with an equivalent output noise temperature Tfl up to -150 K, contributed to the mixer noise while Johnson noise dominated above 1 GHz. The overall conversion loss at 77 K at low intermediate frequencies was measured to be -25 dB, of which 13 dB was due to the coupling loss. The IIEB mixer is very promising for use in heterodyne receivers within the whole infrared range.
|
|
|
Trifonov, V. A., Karasik, B. S., Zorin, M. A., Gol’tsman, G. N., Gershenzon, E. M., Lindgren, M., et al. (1996). 9.6 μm wavelength mixing in a patterned YBa2Cu3O7‐δ thin film. Appl. Phys. Lett., 68(10), 1418–1420.
Abstract: Hot‐electron bolometric (HEB) mixing of 9.6 μm infrared radiation from two lasers in high‐quality YBa2Cu3O7−δ (YBCO) patterned thin film has been demonstrated. A heterodyne measurement showed an intermediate frequency (IF) bandwidth of 18 GHz, limited by our measurement system. An intrinsic limit of 100 GHz is predicted. Between 0.1 and 1 GHz intermediate frequency, temperature fluctuations with an equivalent output noise temperature Tfl up to ∼150 K, contributed to the mixer noise while Johnson noise dominated above 1 GHz. The overall conversion loss at 77 K at low intermediate frequencies was measured to be ∼25 dB, of which 13 dB was due to the coupling loss. The HEB mixer is very promising for use in heterodyne receivers within the whole infrared range.
|
|
|
Zorin, M., Gol'tsman, G. N., Karasik, B. S., Elantev, A. I., Gershenzon, E. M., Lindgren, M., et al. (1995). Optical mixing in thin YBa2Cu3O7-x films. IEEE Trans. Appl. Supercond., 5(2), 2431–2434.
Abstract: High quality, j/sub c/ (77 K)>10/sup 6/ A/cm/sup 2/, epitaxial YBa2Cu3O7-x films of 50 nm thickness were patterned into ten parallel 1 /spl mu/m wide strips. The film structure was coupled to a single-mode fiber. Mixer response was obtained at 0.78 /spl mu/m using laser frequency modulation and an optical delay line. Using two semiconductor lasers at 1.55 /spl mu/m wavelength the beating signal was used to measure the photoresponse up to 18 GHz. Nonequilibrium photoresponse in the resistive state of the superconductor was observed. Bolometric response dominates up to 3 GHz, after which the nonequilibrium response is constant up to the frequency limit of our registration system. Using an electron heating model the influence of different thermal processes on the conversion loss has been analyzed. Ways of increasing the sensitivity are also discussed.
|
|