toggle visibility Search & Display Options

Select All    Deselect All
 | 
Citations
 | 
   print
Amundsen, M., & Linder, J. (2015). General solution of 2D and 3D superconducting quasiclassical systems: coalescing vortices and nanodisk geometries. arXiv:1512.00030 [cond-mat.supr-con], .
toggle visibility
Arutyunov, K. Y., Ramos-Álvarez, A., Semenov, A. V., Korneeva, Y. P., An, P. P., Korneev, A. A., et al. (2016). Quasi-1-dimensional superconductivity in highly disordered NbN nanowires. arXiv:1602.07932v1 [cond-mat.supr-con]. Retrieved April 28, 2024, from https://arxiv.org/abs/1602.07932v1
toggle visibility
Baeva, E. M., Titova, N. A., Veyrat, L., Sacépé, B., Semenov, A. V., Goltsman, G. N., et al. (2021). Thermal relaxation in metal films bottlenecked by diffuson lattice excitations of amorphous substrates. arXiv:2101.07071v1 [cond-mat.mtrl-sci]. Retrieved April 28, 2024, from https://arxiv.org/abs/2101.07071v1
toggle visibility
Beck, M., Klammer, M., Lang, S., Leiderer, P., Kabanov, V. V., Gol’tsman, G. N., et al. (2011). Energy-gap dynamics of superconducting NbN thin films studied by time-resolved terahertz spectroscopy. arXiv:1102.5616v2 [cond-mat.supr-con]. Retrieved April 28, 2024, from https://arxiv.org/abs/1102.5616v2
toggle visibility
Bell, M., Sergeev, A., Mitin, V., Bird, J., Verevkin, A., & Gol'tsman, G. (2007). One-dimensional resistive states in quasi-two-dimensional superconductors. arXiv:0709.0709v1 [cond-mat.supr-con], , 1–11.
toggle visibility
Dorenbos, S. N., Heeres, R. W., Driessen, E. F. C., & Zwiller, V. (2011). Efficient and robust fiber coupling of superconducting single photon detectors. arXiv, , 6.
toggle visibility
Engel, A., Aeschbacher, A., Inderbitzin, K., Schilling, A., Il'in, K., Hofherr, M., et al. (2011). Tantalum nitride superconducting single-photon detectors with low cut-off energy. arXiv, , 9.
toggle visibility
Esteban, E., & Serna, H. (2009). Quantum key distribution protocol with private-public key. arXiv, , 3.
toggle visibility
Jian Wei, David Olaya, Boris Karasik, Sergey Pereverzev, Andrei Sergeev, & Michael Gershenson. (2007). Ultra-sensitive hot-electron nanobolometers for terahertz astrophysics. ArXiv e-prints, 710.
toggle visibility
Kahl, O., Ferrari, S., Kovalyuk, V., Vetter, A., Lewes-Malandrakis, G., Nebel, C., et al. (2016). Spectrally resolved single-photon imaging with hybrid superconducting – nanophotonic circuits. arXiv:1609.07857v1 [physics.ins-det]. Retrieved April 28, 2024, from https://arxiv.org/abs/1609.07857v1
toggle visibility
Korneeva, Y.  P., Vodolazov, D.  Y., Semenov, A. V., Florya, I. N., Simonov, N., Baeva, E., et al. (2018). Optical single photon detection in micron-scaled NbN bridges. arXiv:1802.02881v1 [cond-mat.supr-con]. Retrieved April 28, 2024, from https://arxiv.org/abs/1802.02881v1
toggle visibility
Maslennikov, S. (2014). RF heating efficiency of the terahertz superconducting hot-electron bolometer. arXiv, 1404.5276, arXiv:1404.5276. Retrieved April 28, 2024, from http://arxiv.org/abs/1404.5276
toggle visibility
Mazin, B. A., Bumble, B., Meeker, S. R., O'Brien, K., McHugh, S., & Langman, E. (2011). A superconducting focal plane array for ultraviolet, optical, and near-infrared astrophysics. arXiv, , 9.
toggle visibility
Murphy, A., Semenov, A., Korneev, A., Korneeva, Y., Gol’tsman, G., & Bezryadin, A. (2014). Dark counts initiated by macroscopic quantum tunneling in NbN superconducting photon detectors. arXiv:1410.7689v2 [cond-mat.supr-con]. Retrieved April 28, 2024, from https://arxiv.org/abs/1410.7689v2
toggle visibility
Ovchinnikov, Y. N., & Varlamov, A. A. (2009). Fluctuation-dissipative phenomena in a narrow superconducting channel carrying current below critical. arXiv, 0910.2659v1, 1–4.
toggle visibility
Pernice, W., Schuck, C., Li, M., Goltsman, G. N., Sergienko, A. V., & Tang, H. X. (2011). High speed travelling wave single-photon detectors with near-unity quantum efficiency. arXiv, , 1–14.
toggle visibility
Pernice, W., Schuck, C., Minaeva, O., Li, M., Goltsman, G. N., Sergienko, A. V., et al. (2012). High speed and high efficiency travelling wave single-photon detectors embedded in nanophotonic circuits (Vol. 1108.5299). arXiv:1108.5299v2 [physics.optics]. Retrieved April 28, 2024, from https://arxiv.org/abs/1108.5299v2
toggle visibility
Saveskul, N. A., Titova, N. A., Baeva, E. M., Semenov, A. V., Lubenchenko, A. V., Saha, S., et al. (2019). Superconductivity behavior in epitaxial TiN films points at surface magnetic disorder. arXiv:1903.05009v3 [cond-mat.mtrl-sci]. Retrieved April 28, 2024, from https://arxiv.org/abs/1903.05009v3
toggle visibility
Sidorova, M. V., Kozorezov, A. G., Semenov, A. V., Korneev, A. A., Chulkova, G. M., Korneeva, Y. P., et al. (2018). Non-bolometric bottleneck in electron-phonon relaxation in ultra-thin WSi film. arXiv:1607.07321v4 [physics.ins-det]. Retrieved April 28, 2024, from https://arxiv.org/abs/1607.07321v4
toggle visibility
Sidorova, M., Semenov, A., Korneev, A., Chulkova, G., Korneeva, Y., Mikhailov, M., et al. (2018). Electron-phonon relaxation time in ultrathin tungsten silicon film. arXiv:1607.07321v1 [physics.ins-det]. Retrieved April 28, 2024, from https://arxiv.org/abs/1607.07321v1
toggle visibility
Sprengers, J. P., Gaggero, A., Sahin, D., Nejad, S. J., Mattioli, F., Leoni, R., et al. (2011). Waveguide single-photon detectors for integrated quantum photonic circuits. arXiv, , 11.
toggle visibility
Sprengers, J. P., Gaggero, A., Sahin, D., Nejad, S. J., Mattioli, F., Leoni, R., et al. (2011). Waveguide single-photon detectors for integrated quantum photonic circuits. In arXiv (Vol. 1108.5107, pp. 1–11).
toggle visibility
Steudle, G. A., Schietinger, S., Höckel, D., Dorenbos, S. N., Zwiller, V., & Benson, O. (2011). Quantum nature of light measured with a single detector. arXiv, , 7.
toggle visibility
Select All    Deselect All
 | 
Citations
 | 
   print