|
Akhmadishina, K. F., Bobrinetskiy, I. I., Komarov, I. A., Malovichko, A. M., Nevolin, V. K., Fedorov, G. E., et al. (2015). Fast-response biological sensors based on single-layer carbon nanotubes modified with specific aptamers. Semicond., 49(13), 1749–1753.
Abstract: The possibility of the fabrication of a fast-response biological sensor based on a composite of single-layer carbon nanotubes and aptamers for the specific detection of proteins is shown. The effect of modification of the surface of the carbon nanotubes on the selectivity and sensitivity of the sensors is investigated. It is shown that carboxylated nanotubes have a better selectivity for detecting thrombin.
|
|
|
Belosevich, V. V., Gayduchenko, I. A., Titova, N. A., Zhukova, E. S., Goltsman, G. N., Fedorov, G. E., et al. (2018). Response of carbon nanotube film transistor to the THz radiation. In EPJ Web Conf. (Vol. 195, 05012 (1 to 2)).
|
|
|
Dube, I., Jiménez, D., Fedorov, G., Boyd, A., Gayduchenko, I., Paranjape, M., et al. (2015). Understanding the electrical response and sensing mechanism of carbon-nanotube-based gas sensors. Carbon, 87, 330–337.
Abstract: Gas sensors based on carbon nanotube field effect transistors (CNFETs) have outstanding sensitivity compared to existing technologies. However, the lack of understanding of the sensing mechanism has greatly hindered progress on calibration standards and customization of these nano-sensors. Calibration requires identifying fundamental transistor parameters and establishing how they vary in the presence of a gas. This work focuses on modeling the electrical response of CNTFETs in the presence of oxidizing (NO2) and reducing (NH3) gases and determining how the transistor characteristics are affected by gas-induced changes of contact properties, such as the Schottky barrier height and width, and by the doping level of the nanotube. From the theoretical fits of the experimental transfer characteristics at different concentrations of NO2 and NH3, we find that the CNTFET response can be modeled by introducing changes in the Schottky barrier height. These changes are directly related to the changes in the metal work function of the electrodes that we determine experimentally, independently, with a Kelvin probe. Our analysis yields a direct correlation between the ON – current and the changes in the electrode metal work function. Doping due to molecules adsorbed at the carbon-nanotube/metal interface also affects the transfer characteristics.
|
|
|
Eletskii, A. V., Sarychev, A. K., Boginskaya, I. A., Bocharov, G. S., Gaiduchenko, I. A., Egin, M. S., et al. (2018). Amplification of a Raman scattering signal by carbon nanotubes. Dokl. Phys., 63(12), 496–498.
Abstract: The effect of Raman scattering (RLS) signal amplification by carbon nanotubes (CNTs) was studied. Single-layered nanotubes were synthesized by the chemical vapor deposition (CVD) method using methane as a carbon-containing gas. The object of study used was water, the Raman spectrum of which is rather well known. Amplification of the Raman scattering signal by several hundred percent was attained in our work. The maximum amplification of a Raman scattering signal was shown to be achieved at an optimal density of nanotubes on a substrate. This effect was due to the scattering and screening of plasmons excited in CNTs by neighboring nanotubes. The amplification mechanism and the possibilities of optimization for this effect were discussed on the basis of the theory of plasmon resonance in carbon nanotubes.
|
|
|
Emelianov, A. V., Nekrasov, N. P., Moskotin, M. V., Fedorov, G. E., Otero, N., Romero, P. M., et al. (2021). Individual SWCNT transistor with photosensitive planar junction induced by two‐photon oxidation. Adv. Electron. Mater., 7(3), 2000872.
Abstract: The fabrication of planar junctions in carbon nanomaterials is a promising way to increase the optical sensitivity of optoelectronic nanometer-scale devices in photonic connections, sensors, and photovoltaics. Utilizing a unique lithography approach based on direct femtosecond laser processing, a fast and easy technique for modification of single-walled carbon nanotube (SWCNT) optoelectronic properties through localized two-photon oxidation is developed. It results in a novel approach of quasimetallic to semiconducting nanotube conversion so that metal/semiconductor planar junction is formed via local laser patterning. The fabricated planar junction in the field-effect transistors based on individual SWCNT drastically increases the photoresponse of such devices. The broadband photoresponsivity of the two-photon oxidized structures reaches the value of 2 × 107 A W−1 per single SWCNT at 1 V bias voltage. The SWCNT-based transistors with induced metal/semiconductor planar junction can be applied to detect extremely small light intensities with high spatial resolution in photovoltaics, integrated circuits, and telecommunication applications.
|
|