|
Baselmans, J. J. A., Baryshev, A., Reker, S. F., Hajenius, M., Gao, J. R., Klapwijk, T. M., et al. (2005). Direct detection effect in small volume hot electron bolometer mixers. Appl. Phys. Lett., 86(16), 163503 (1 to 3).
Abstract: We measure the direct detection effect in a small volume (0.15μm×1μm×3.5nm)(0.15μm×1μm×3.5nm) quasioptical NbN phonon cooled hot electronbolometermixer at 1.6THz1.6THz. We find that the small signal sensitivity of the receiver is underestimated by 35% due to the direct detection effect and that the optimal operating point is shifted to higher bias voltages when using calibration loads of 300K300K and 77K77K. Using a 200GHz200GHzbandpass filter at 4.2K4.2K the direct detection effect virtually disappears. This has important implications for the calibration procedure of these receivers in real telescope systems.
|
|
|
Cherednichenko, S., Kollberg, E., Angelov, I., Drakinskiy, V., Berg, T., & Merkel, H. (2005). Effect of the direct detection effect on the HEB receiver sensitivity calibration. In Proc. 16th Int. Symp. Space Terahertz Technol. (pp. 235–239). Göteborg, Sweden.
Abstract: We analyze the scale of the HEB receiver sensitivity calibration error caused by the so called “direct detection effect”. The effect comes from changing of the HEB parameters when whey face the calibration loads of different temperatures. We found that for HIFI Band 6 mixers (Herschel Space Observatory) the noise temperature error is of the order of 8% for 300K/77K loads (lab receiver) and 2.5% for 100K/10K loads (in HIFI). Using different approach we also predict that with an isolator between the mixer and the low noise amplifiers the error can be much smaller.
|
|
|
Cherednichenko, S., Drakinskiy, V., Berg, T., Kollberg, E. L., & Angelov, I. (2007). The direct detection effect in the hot-electron bolometer mixer sensitivity calibration. IEEE Trans. Microw. Theory Techn., 55(3), 504–510.
|
|
|
Gao, J. R., Hajenius, M., Yang, Z. Q., Baselmans, J. J. A., Khosropanah, P., Barends, R., et al. (2007). Terahertz superconducting hot electron bolometer heterodyne receivers. IEEE Trans. Appl. Supercond., 17(2), 252–258.
Abstract: We highlight the progress on NbN hot electron bolometer (HEB) mixers achieved through fruitful collaboration between SRON Netherlands Institute for Space Research and Delft University of Technology, the Netherlands. This includes the best receiver noise temperatures of 700 K at 1.63 THz using a twin-slot antenna mixer and 1050 K at 2.84 THz using a spiral antenna coupled HEB mixer. The mixers are based on thin NbN films on Si and fabricated with a new contact-process and-structure. By reducing their areas HEB mixers have shown an LO power requirement as low as 30 nW. Those small HEB mixers have demonstrated equivalent sensitivity as those with large areas provided the direct detection effect due to broadband radiation is removed. To manifest that a HEB based heterodyne receiver can in practice be used at arbitrary frequencies above 2 THz, we demonstrate a 2.8 THz receiver using a THz quantum cascade laser (QCL) as local oscillator.
|
|