|
Men’shchikov, E. M., Gogidze, I. G., Sergeev, A. V., Elant’ev, A. I., Kuminov, P. B., Gol’tsman, G. N., et al. (1997). Superconducting fast detector based on the nonequilibrium inductance response of a film of niobium nitride. Tech. Phys. Lett., 23(6), 486–488.
Abstract: A new type of fast detector is proposed, whose operation is based on the variation of the kinetic inductance of a superconducting film caused by nonequilibrium quasiparticles created by the electromagnetic radiation. The speed of the detector is determined by the rate of multiplication of photo-excited quasiparticles, and is nearly independent of the temperature, being less than 1 ps for NbN. Models based on the Owen-Scalapino scheme give a good description of the experimentally determined dependence of the power-voltage sensitivity of the detector on the modulation frequency. The lifetime of the quasiparticles is determined, and it is shown that the reabsorption of nonequilibrium phonons by the condensate has a substantial effect even in ultrathin NbN films 5 nm thick, and results in the maximum possible quantum yield. A low concentration of equilibrium quasiparticles and a high quantum yield result in a detectivity D*=1012 W−1·Hz1/2 at a temperature T=4.2 K and D*=1016 W−1·cm· Hz1/2 at T=1.6 K.
|
|
|
Semenov, A. D., Heusinger, M. A., Renk, K. F., Menschikov, E., Sergeev, A. V., Elant'ev, A. I., et al. (1997). Influence of phonon trapping on the performance of NbN kinetic inductance detectors. IEEE Trans. Appl. Supercond., 7(2), 3083–3086.
Abstract: Voltage and microwave photoresponse of NbN thin films to modulated and pulsed optical radiation reveals, far below the superconducting transition, a response time consistent with the lifetime of nonequilibrium quasiparticles. We show that even in 5 nm thick films at 4.2 K the phonon trapping is significant resulting in a quasiparticle lifetime of a few nanoseconds that is an order of magnitude larger than the recombination time. Values and temperature dependence of the quasiparticle lifetime obey the Bardeen-Cooper-Schrieffer theory and are in quantitative agreement with the electron-phonon relaxation rate determined from the resistive response near the superconducting transition. We discuss a positive effect of the phonon trapping on the performance of kinetic inductance detectors.
|
|