|
Dauler, E. A., Kerman, A. J., Robinson, B. S., Yang, J. K. W., Voronov, B. M., Gol’tsman, G. N., et al. (2006). Achieving high counting rates in superconducting nanowire single-photon detectors. In CLEO/QELS (JTuD3 (1 to 2)). Optical Society of America.
Abstract: Kinetic inductance is determined to be the primary limitation to the counting rate of superconducting nanowire single-photon counters. Approaches for overcoming this limitation will be discussed.
|
|
|
Khasminskaya, S., Pyatkov, F., Słowik, K., Ferrari, S., Kahl, O., Kovalyuk, V., et al. (2016). Fully integrated quantum photonic circuit with an electrically driven light source. Nat. Photon., 10(11), 727–732.
Abstract: Photonic quantum technologies allow quantum phenomena to be exploited in applications such as quantum cryptography, quantum simulation and quantum computation. A key requirement for practical devices is the scalable integration of single-photon sources, detectors and linear optical elements on a common platform. Nanophotonic circuits enable the realization of complex linear optical systems, while non-classical light can be measured with waveguide-integrated detectors. However, reproducible single-photon sources with high brightness and compatibility with photonic devices remain elusive for fully integrated systems. Here, we report the observation of antibunching in the light emitted from an electrically driven carbon nanotube embedded within a photonic quantum circuit. Non-classical light generated on chip is recorded under cryogenic conditions with waveguide-integrated superconducting single-photon detectors, without requiring optical filtering. Because exclusively scalable fabrication and deposition methods are used, our results establish carbon nanotubes as promising nanoscale single-photon emitters for hybrid quantum photonic devices.
|
|
|
Marksteiner, M., Divochiy, A., Sclafani, M., Haslinger, P., Ulbricht, H., Korneev, A., et al. (2009). A superconducting NbN detector for neutral nanoparticles. Nanotechnol., 20(45), 455501.
Abstract: We present a proof-of-principle study of superconducting single photon detectors (SSPD) for the detection of individual neutral molecules/nanoparticles at low energies. The new detector is applied to characterize a laser desorption source for biomolecules and allows retrieval of the arrival time distribution of a pulsed molecular beam containing the amino acid tryptophan, the polypeptide gramicidin as well as insulin, myoglobin and hemoglobin. We discuss the experimental evidence that the detector is actually sensitive to isolated neutral particles.
|
|
|
Marsili, F., Bitauld, D., Divochiy, A., Gaggero, A., Leoni, R., Mattioli, F., et al. (2008). Superconducting nanowire photon number resolving detector at telecom wavelength. In CLEO/QELS (Qmj1 (1 to 2)). Optical Society of America.
Abstract: We demonstrate a photon-number-resolving (PNR) detector, based on parallel superconducting nanowires, capable of resolving up to 5 photons in the telecommunication wavelength range, with sensitivity and speed far exceeding existing approaches.
|
|
|
Wei, J., Olaya, D., Karasik, B. S., Pereverzev, S. V., Sergeev, A. V., & Gershenson, M. E. (2008). Ultrasensitive hot-electron nanobolometers for terahertz astrophysics. Nature Nanotech, 3(8), 496–500.
Abstract: The submillimetre or terahertz region of the electromagnetic spectrum contains approximately half of the total luminosity of the Universe and 98% of all the photons emitted since the Big Bang. This radiation is strongly absorbed in the Earth's atmosphere, so space-based terahertz telescopes are crucial for exploring the evolution of the Universe. Thermal emission from the primary mirrors in these telescopes can be reduced below the level of the cosmic background by active cooling, which expands the range of faint objects that can be observed. However, it will also be necessary to develop bolometers – devices for measuring the energy of electromagnetic radiation—with sensitivities that are at least two orders of magnitude better than the present state of the art. To achieve this sensitivity without sacrificing operating speed, two conditions are required. First, the bolometer should be exceptionally well thermally isolated from the environment;
second, its heat capacity should be sufficiently small. Here we demonstrate that these goals can be achieved by building a superconducting hot-electron nanobolometer. Its design eliminates the energy exchange between hot electrons and the leads by blocking electron outdiffusion and photon emission. The thermal conductance between hot electrons and the thermal bath, controlled by electron–phonon interactions, becomes very small at low temperatures (10-16 WK-1 at 40 mK). These devices, with a heat capacity of 10-19 J K-1, are sufficiently sensitive to detect single terahertz photons in submillimetre astronomy and other applications based on quantum calorimetry and photon counting.
|
|